A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{4π}{3}$ | D. | $\frac{5π}{3}$ |
分析 先將函數(shù)化簡為y=Asin(ωx+φ)的形式,再根據(jù)三角函數(shù)的奇偶性和單調(diào)性對選項(xiàng)進(jìn)行逐一驗(yàn)證即可得到答案.
解答 解:根據(jù)題意,f(x)=$\sqrt{3}$sin(2x+φ)+cos(2x+φ)=2[$\frac{\sqrt{3}}{2}$sin(2x+φ)+$\frac{1}{2}$cos(2x+φ)]
=2sin(2x+φ+$\frac{π}{6}$),
若f(x)為偶函數(shù),則有φ+$\frac{π}{6}$=kπ+$\frac{π}{2}$,即φ=kπ+$\frac{π}{3}$,
分析選項(xiàng),可以排除B、D,
對于A、當(dāng)φ=$\frac{π}{3}$時,f(x)=2sin(2x+$\frac{π}{2}$)=2cos2x,在[0,$\frac{π}{4}$]上是減函數(shù),不符合題意,
對于C、當(dāng)φ=$\frac{4π}{3}$時,f(x)=2sin(2x+$\frac{3π}{2}$)=-2cos2x,在[0,$\frac{π}{4}$]上是增函數(shù),符合題意,
故選:C.
點(diǎn)評 本題考查三角函數(shù)的單調(diào)性和奇偶性.一般都要先將函數(shù)解析式化簡為y=Asin(ωx+φ)的形式,再根據(jù)題中條件解題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m∥γ,α⊥γ | B. | n∥β,α⊥γ | C. | β∥γ,α⊥γ | D. | m⊥n,α⊥γ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{9}$ | B. | $\frac{1}{9}$ | C. | $\frac{5}{3}$ | D. | $-\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 34種 | B. | 48種 | C. | 96種 | D. | 144種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 6 | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.4 | B. | 0.6 | C. | 0.7 | D. | 0.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $x±2\sqrt{2}y=0$ | B. | $2\sqrt{2}x±y=0$ | C. | x±8y=0 | D. | 8x±y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{π}{12}$,$\frac{5π}{12}$) | B. | ($\frac{π}{6}$,$\frac{π}{4}$) | C. | ($\frac{π}{4}$,$\frac{3π}{4}$) | D. | ($\frac{π}{6}$,$\frac{5π}{6}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com