18.在[0,2π]上隨機取一個數(shù)x,則事件“$cos(x+\frac{π}{3})+\sqrt{3}sin(x+\frac{π}{3})≥1$”發(fā)生的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

分析 利用三角函數(shù)的輔助角公式求出$cos(x+\frac{π}{3})+\sqrt{3}sin(x+\frac{π}{3})≥1$的等價條件,利用幾何概型的概率公式即可得到結(jié)論.

解答 解:由$cos(x+\frac{π}{3})+\sqrt{3}sin(x+\frac{π}{3})≥1$得2sin(x+$\frac{π}{2}$)≥1,
即cosx≥$\frac{1}{2}$,
∵0≤x≤2π,
∴x的取值范圍是0≤x≤$\frac{π}{3}$或$\frac{5π}{3}$≤x≤2π,
則“$cos(x+\frac{π}{3})+\sqrt{3}sin(x+\frac{π}{3})≥1$”發(fā)生的概率P=$\frac{\frac{2π}{3}}{2π}$=$\frac{1}{3}$,
故選:B.

點評 本題主要考查幾何概型的概率的計算,利用輔助角公式求出不等式的等價條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,四棱錐P-ABCD中,∠ABC=BAD=90°,BC=2AD,△PAB與△PAD都是邊長為2的等邊三角形,E是BC的中點.
(I)求證:AE∥平面PCD
(II)證明:平面PCD⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.2017年的3月25日,中國國家隊在2018俄羅斯世界杯亞洲區(qū)預(yù)選賽12強戰(zhàn)小組賽中,在長沙以1比0力克韓國國家隊,賽后有六人隊員打算排成一排照相,其中隊長主動要求排在排頭或排尾,甲、乙兩人必須相鄰,則滿足要求的排法有(  )
A.34種B.48種C.96種D.144種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在2個零點x1,x2,且x1,x2都大于0,則a的取值范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知隨機變量X~N(1,σ2),若P(0<x<3)=0.5,P(0<X<1)=0.2,則P(X<3)=( 。
A.0.4B.0.6C.0.7D.0.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|x2>x},B={-1,0,$\frac{1}{2}$,2},則A∩B=(  )
A.{0,2}B.{-1,2}C.$\{0,\frac{1}{2}\}$D.$\{\frac{1}{2},2\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)的離心率是3,則其漸近線的方程為( 。
A.$x±2\sqrt{2}y=0$B.$2\sqrt{2}x±y=0$C.x±8y=0D.8x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=tan(x+\frac{π}{4})$.
(Ⅰ)求f(x)的定義域;
(Ⅱ)設(shè)β是銳角,且$f(β)=2sin(β+\frac{π}{4})$,求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如果函數(shù)y=f(x)的定義域為R,且存在實常數(shù)a,使得對于定義域內(nèi)任意x,都有f(x+a)=f(-x)成立,則稱此函數(shù)f(x)具有“P(a)性質(zhì)”.
(1)判斷函數(shù)y=cosx是否具有“P(a)性質(zhì)”,若具有“P(a)性質(zhì)”,求出所有a的值的集合;若不具有“P(a)性質(zhì)”,請說明理由;
(2)已知函數(shù)y=f(x)具有“P(0)性質(zhì)”,且當x≤0時,f(x)=(x+m)2,求函數(shù)y=f(x)在區(qū)間[0,1]上的值域;
(3)已知函數(shù)y=g(x)既具有“P(0)性質(zhì)”,又具有“P(2)性質(zhì)”,且當-1≤x≤1時,g(x)=|x|,若函數(shù)y=g(x)的圖象與直線y=px有2017個公共點,求實數(shù)p的值.

查看答案和解析>>

同步練習(xí)冊答案