A. | ($\frac{π}{12}$,0) | B. | (-$\frac{π}{12}$,0) | C. | ($\frac{7π}{12}$,0) | D. | (-$\frac{π}{4}$,0) |
分析 利用函數y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再利用正弦函數的圖象的對稱性得出結論.
解答 解:將函數f(x)=sin(x+$\frac{π}{6}$)的圖象向左平移$\frac{π}{4}$個單位,所得函數g(x)=sin(x+$\frac{π}{4}$+$\frac{π}{6}$)=sin(x+$\frac{5π}{12}$)圖象,
令x+$\frac{5π}{12}$=kπ,求得x=kπ-$\frac{5π}{12}$,k∈Z,故g(x)的圖象的對稱中心是(kπ-$\frac{5π}{12}$,0),
故選:C.
點評 本題主要考查函數y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數的圖象的對稱性,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | {-1,1} | B. | {1,2} | C. | {-1,1,3,5} | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com