8.已知△ABC中,3sin2B+7sin2C=2sinAsinBsinC+2sin2A,則sin(A+$\frac{π}{4}$)=-$\frac{\sqrt{10}}{10}$.

分析 3sin2B+7sin2C=2sinAsinBsinC+2sin2A,由正弦定理可得:3b2+7c2=2bcsinA+2a2,由余弦定理可得:a2=b2+c2-2bccosA,化為:2(sinA-2cosA)=$\frac{^{2}+5{c}^{2}}{bc}$=$\frac{c}$+$\frac{5c}$,再利用基本不等式的性質(zhì)即可得

解答 解:3sin2B+7sin2C=2sinAsinBsinC+2sin2A,
由正弦定理可得:3b2+7c2=2bcsinA+2a2,
∴a2=$\frac{3^{2}+7{c}^{2}-2bcsinA}{2}$,又a2=b2+c2-2bccosA,
∴$\frac{3^{2}+7{c}^{2}-2bcsinA}{2}$=b2+c2-2bccosA,
化為:2(sinA-2cosA)=$\frac{^{2}+5{c}^{2}}{bc}$=$\frac{c}$+$\frac{5c}$≥2$\sqrt{\frac{c}×\frac{5c}}$=2$\sqrt{5}$,當(dāng)且僅當(dāng)b=$\sqrt{5}$c時取等號.
即2$\sqrt{5}$sin(A-θ)≥2$\sqrt{5}$,其中tanθ=2,sinθ=$\frac{2}{\sqrt{5}}$,cosθ=$\frac{1}{\sqrt{5}}$.
即sin(A-θ)≥1,又sin(A-θ)≤1,
∴sin(A-θ)=1.
∴A-θ=$\frac{π}{2}$+2kπ,即A=θ+$\frac{π}{2}$+2kπ,k∈N*
∴sin(A+$\frac{π}{4}$)=$sin(θ+\frac{π}{4}+\frac{π}{2}+2kπ)$=cos$(θ+\frac{π}{4})$=$\frac{\sqrt{2}}{2}(cosθ-sinθ)$=$\frac{\sqrt{2}}{2}$×$(\frac{1}{\sqrt{5}}-\frac{2}{\sqrt{5}})$=-$\frac{\sqrt{10}}{10}$.
故答案為:-$\frac{\sqrt{10}}{10}$.

點(diǎn)評 本題考查了正弦定理余弦定理、基本不等式的性質(zhì)、和差公式,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=2x3-3x2-12x+5在[0,2]上的最大值和最小值分別是( 。
A.12,-15B.5,-15C.12,-5D.5,-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知在各棱長都為2的三棱錐A-BCD中,棱DA,DB,DC的中點(diǎn)分別為P,Q,R,則三棱錐Q-APR的體積為(  )
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{2}}{8}$C.$\frac{\sqrt{2}}{12}$D.$\frac{\sqrt{2}}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1右焦點(diǎn)為F,P為雙曲線左支點(diǎn)上一點(diǎn),點(diǎn)A(0,$\sqrt{2}$),則△APF周長的最小值為(  )
A.4(1+$\sqrt{2}$)B.4+$\sqrt{2}$C.2($\sqrt{2}$+$\sqrt{6}$)D.$\sqrt{6}$+3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知在△ABC所在平面內(nèi)有兩點(diǎn)P、Q,滿足$\stackrel{→}{PA}$+$\stackrel{→}{PC}$=0,$\stackrel{→}{QA}$+$\stackrel{→}{QB}$+$\stackrel{→}{QC}$=$\stackrel{→}{BC}$,若|$\stackrel{→}{AB}$|=4,|$\stackrel{→}{AC}$|=2,S△APQ=$\frac{2}{3}$,則$\stackrel{→}{AB}$•$\stackrel{→}{AC}$的值為( 。
A.4B.±4C.4$\sqrt{3}$D.±4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)的定義域?yàn)镽,f(x)=$\left\{{\begin{array}{l}{x,0≤x<1}\\{{{(\frac{1}{3})}^x}-1,-1≤x<0}\end{array}}$且對任意的x∈R都有f(x+1)=f(x-1),若在區(qū)間[-1,5)上函數(shù)g(x)=f(x)-mx-m恰有4個不同零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.$({0,\frac{1}{4}}]$B.$({\frac{1}{4},\frac{1}{2}}]$C.$[{\frac{1}{4},\frac{1}{2}})$D.$({0,\frac{1}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓E:x2+$\frac{{y}^{2}}{^{2}}$=1(0<b<1)的左焦點(diǎn)為F,左、右頂點(diǎn)分別為A、C,上頂點(diǎn)為B,過F、B、C三點(diǎn)作圓P.
(Ⅰ)若圓P的圓心在直線x+y=0上,求橢圓E的方程;
(Ⅱ)若直線y=x+t交(Ⅰ)中橢圓E于M,N,交y軸于Q,求|MN|•|OQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.要計(jì)算1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2017}$的結(jié)果,如圖程序框圖中的判斷框內(nèi)可以填( 。
A.n<2017B.n≤2017C.n>2017D.n≥2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知m,n是兩條不同的直線,α是平面,則下列命題中是真命題的是( 。
A.若m∥α,m∥n,則n∥αB.若m⊥α,n⊥α,則m∥nC.若m∥α,m⊥n,則n∥αD.若m⊥α,n⊥m,則n∥α

查看答案和解析>>

同步練習(xí)冊答案