9.若復(fù)數(shù)z=$\frac{2+i}{1+i}$,其中i為虛數(shù)單位,則復(fù)數(shù)z的虛部是( 。
A.$\frac{3}{2}$B.-$\frac{1}{2}$C.-$\frac{3}{2}$iD.$\frac{1}{2}$i

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù)z得答案.

解答 解:z=$\frac{2+i}{1+i}$=$\frac{(2+i)(1-i)}{(1+i)(1-i)}=\frac{3-i}{2}=\frac{3}{2}-\frac{1}{2}i$,
則復(fù)數(shù)z的虛部是:$-\frac{1}{2}$.
故選:B.

點(diǎn)評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知在各棱長都為2的三棱錐A-BCD中,棱DA,DB,DC的中點(diǎn)分別為P,Q,R,則三棱錐Q-APR的體積為( 。
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{2}}{8}$C.$\frac{\sqrt{2}}{12}$D.$\frac{\sqrt{2}}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓E:x2+$\frac{{y}^{2}}{^{2}}$=1(0<b<1)的左焦點(diǎn)為F,左、右頂點(diǎn)分別為A、C,上頂點(diǎn)為B,過F、B、C三點(diǎn)作圓P.
(Ⅰ)若圓P的圓心在直線x+y=0上,求橢圓E的方程;
(Ⅱ)若直線y=x+t交(Ⅰ)中橢圓E于M,N,交y軸于Q,求|MN|•|OQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.要計算1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2017}$的結(jié)果,如圖程序框圖中的判斷框內(nèi)可以填( 。
A.n<2017B.n≤2017C.n>2017D.n≥2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\frac{sinx}{2+cosx}$,如果當(dāng)x>0時,若函數(shù)f(x)的圖象恒在直線y=kx的下方,則k的取值范圍是(  )
A.[$\frac{1}{3}$,$\frac{\sqrt{3}}{3}$]B.[$\frac{1}{3}$,+∞)C.[$\frac{\sqrt{3}}{3}$,+∞)D.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的實(shí)軸長為2,離心率為$\sqrt{5}$,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{16}$=1B.x2-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{2}$$-\frac{{y}^{2}}{3}$=1D.x2$-\frac{{y}^{2}}{6}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出i的值為( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知m,n是兩條不同的直線,α是平面,則下列命題中是真命題的是( 。
A.若m∥α,m∥n,則n∥αB.若m⊥α,n⊥α,則m∥nC.若m∥α,m⊥n,則n∥αD.若m⊥α,n⊥m,則n∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知一直線過點(diǎn)(1,2)且與兩坐標(biāo)軸的正半軸圍成的三角形面積最小,求該直線方程.

查看答案和解析>>

同步練習(xí)冊答案