分析 把根式內(nèi)部的代數(shù)式化為完全平方式的形式,由已知等式可得sinx≥cosx,再由已知x的范圍求得x的具體范圍.
解答 解:∵$\sqrt{1-sin2x}$=$\sqrt{si{n}^{2}x+co{s}^{2}x-2sinxcosx}$=$\sqrt{(sinx-cosx)^{2}}=|sinx-cosx|$=sinx-cosx,
∴sinx≥cosx,又x∈(0,2π),
∴x∈[$\frac{π}{4},\frac{5π}{4}$].
故答案為:∈[$\frac{π}{4},\frac{5π}{4}$].
點(diǎn)評 本題考查三角函數(shù)的化簡求值,考查三角函數(shù)的象限符號,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,+∞) | B. | (-∞,-1] | C. | (-∞,0) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | α<β | B. | α>β | C. | α+β<$\frac{3π}{2}$ | D. | α+β>$\frac{3π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{13}$+$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{18}$=1 | D. | $\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{9}$=1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com