分析 (Ⅰ)取PD中點(diǎn)H,連結(jié)MH,AH.推導(dǎo)出四邊形ABMH為平行四邊形,從而BM∥AH,由此能證明BM∥平面PAD.
(Ⅱ) 取AD中點(diǎn)O,連結(jié)PO.以O(shè)為原點(diǎn),建立空間直角坐標(biāo)系,利用向量法能求出二面角P-BC-D的余弦值.
解答 (本小題滿分12分)
證明:(Ⅰ)取PD中點(diǎn)H,連結(jié)MH,AH.
因?yàn)?nbsp;M為${x_1}=-\sqrt{2}$中點(diǎn),所以 $HM∥CD,HM=\frac{1}{2}CD$.
因?yàn)?AB∥CD,AB=\frac{1}{2}CD$.所以AB∥HM且AB=HM.
所以四邊形ABMH為平行四邊形,所以 BM∥AH.
因?yàn)?nbsp;BM?平面PAD,AH?平面PAD,
所以BM∥平面PAD.…..(5分)
解:(Ⅱ) 取AD中點(diǎn)O,連結(jié)PO.
因?yàn)?nbsp;PA=PD,所以PO⊥AD.
因?yàn)?nbsp;平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,PO?平面PAD,
所以PO⊥平面ABCD.取BC中點(diǎn)K,連結(jié)OK,則OK∥AB.
以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,
設(shè)AB=2,則 $A(1,0,0),B(1,2,0),C(-1,4,0),D(-1,0,0),P(0,0,\sqrt{3})$,$\overrightarrow{BC}=(-2,2,0),\overrightarrow{PB}=(1,2,-\sqrt{3})$.
平面BCD的法向量$\overrightarrow{OP}=(0,0,\sqrt{3})$,
設(shè)平面PBC的法向量$\overrightarrow{{n_{\;}}}=(x,y,z)$,
由$\left\{\begin{array}{l}\overrightarrow{BC}•\overrightarrow{{n_{\;}}}=0\\ \overrightarrow{PB}•\overrightarrow{{n_{\;}}}=0\end{array}\right.$,得$\left\{\begin{array}{l}-2x+2y=0\\ x+2y-\sqrt{3}z=0.\end{array}\right.$令x=1,則$\overrightarrow{{n_{\;}}}=(1,1,\sqrt{3})$.
$cos<\overrightarrow{OP},\overrightarrow{{n_{\;}}}>=\frac{{\overrightarrow{OP}•\overrightarrow n}}{{|\overrightarrow{OP}||\overrightarrow{n|}}}=\frac{{\sqrt{15}}}{5}$.
由圖可知,二面角P-BC-D是銳二面角,
所以二面角P-BC-D的余弦值為$\frac{{\sqrt{15}}}{5}$.…..(12分)
點(diǎn)評(píng) 本題考查線面平行的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度 | B. | 向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度 | ||
C. | 向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | D. | 向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$或$\sqrt{5}$ | B. | 2或5 | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{10}$ | B. | 10 | C. | 8 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com