9.設函數(shù)f(x)=lg(x2-x)-lg(x-1).且f(x0)=2.則x0=100.

分析 f(x0)=2,⇒lg(x02-x0)-lg(x0-1)=2.$\frac{{x}_{0}({x}_{0}-1)}{{x}_{0}-1}={e}^{2}$,且${{x}_{0}}^{2}-{x}_{0}>0,{x}_{0}-1>0$,解得x0

解答 解:f(x0)=2,⇒lg(x02-x0)-lg(x0-1)=2,
∴$\frac{{x}_{0}({x}_{0}-1)}{{x}_{0}}=1{0}^{2}$
且${{x}_{0}}^{2}-{x}_{0}>0,{x}_{0}-1>0$,解得x0=100,
經(jīng)檢驗符合題意.故答案為:100.

點評 本題考查了對數(shù)型方程的解法,對數(shù)的運算性質(zhì),屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.求極限$\underset{lim}{x→∞}$$\frac{1+{x}^{3}}{3{x}^{3}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,a+b=3.
(1)求橢圓C的方程;
(2)如圖,A,B,D是橢圓C的頂點,P是橢圓C上除頂點外的任意一點,直線DP交x軸于點N,直線AD交BP于點M,設MN的斜率為m,BP的斜率為n,證明:2m-n為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知向量$\overrightarrow a•(\overrightarrow a+2\overrightarrow b)=0$,$|\overrightarrow a|=|\overrightarrow b|=2$,則向量$\overrightarrow a,\overrightarrow b$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.一個袋中裝有大小相同,編號分別為1,2,3,4,5,6,7,8的八個球,從中有放回地每次取一個球,共取2次,則取得兩個球的編號和小于15的概率為(  )
A.$\frac{29}{32}$B.$\frac{63}{64}$C.$\frac{31}{32}$D.$\frac{61}{64}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)$y={log_{\frac{1}{2}}}({x^2}-4x-5)$的遞增區(qū)間為(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.由代數(shù)式的乘法法則類比推導向量的數(shù)量積的運算法則:
①“mn=nm”類比得到“$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow$•$\overrightarrow{a}$”;
②“(m+n)t=mt+nt”類比得到“($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$”;
③“t≠0,mt=nt⇒m=n”類比得到“$\overrightarrow{c}$≠0,$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow$•$\overrightarrow{c}$⇒$\overrightarrow{a}$=$\overrightarrow$”;
④“|m•n|=|m|•|n|”類比得到“|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|”;
⑤“(m•n)t=m(n•t)”類比得到“($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$•$\overrightarrow{c}$)”;
⑥“$\frac{ac}{bc}$=$\frac{a}$”類比得到$\frac{\overrightarrow{a}•\overrightarrow{c}}{\overrightarrow•\overrightarrow{c}}$=$\frac{\overrightarrow{a}}{\overrightarrow}$.以上的式子中,類比得到的結(jié)論正確的是①②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知角α的終邊過點$P(\frac{1}{2},\frac{{\sqrt{3}}}{2})$,則sinα=( 。
A.$\frac{1}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在平面直角坐標系xoy中,點P到$({0,-\sqrt{3}}),({0,\sqrt{3}})$兩點的距離之和等于4,若點P的軌跡為C.
(1)求C的方程;
(2)如果經(jīng)過點(0,1)的直線l交C于點A,B,且$\overrightarrow{OA}•\overrightarrow{AB}=0$,求該直線的方程及$|{\overrightarrow{AB}}|$.

查看答案和解析>>

同步練習冊答案