17.直線$\frac{x}{5}$+$\frac{y}{2}$=1和坐標(biāo)軸所圍成的三角形的面積是(  )
A.2B.5C.7D.10

分析 求出直線$\frac{x}{5}$+$\frac{y}{2}$=1,與坐標(biāo)軸的交點(diǎn)分別為(5,0),(0,2),即可求出直線$\frac{x}{5}$+$\frac{y}{2}$=1和坐標(biāo)軸所圍成的三角形的面積.

解答 解:直線$\frac{x}{5}$+$\frac{y}{2}$=1,與坐標(biāo)軸的交點(diǎn)分別為(5,0),(0,2),
∴直線$\frac{x}{5}$+$\frac{y}{2}$=1和坐標(biāo)軸所圍成的三角形的面積是$\frac{1}{2}×2×5$=5,
故選B.

點(diǎn)評 本題考查直線的截距式方程,考查三角形面積的計(jì)算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={-1,0,1},$B=\left\{{α|-\frac{π}{3}≤α≤\frac{π}{4}}\right\}$,則A∩B中元素個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.曲線f(x)=x2+lnx上任意一點(diǎn)的切線為l1,曲線g(x)=ex-ax上總有一條切線l2與l1平行,則a的取值范圍是( 。
A.$(-2\sqrt{2},2\sqrt{2})$B.$(-∞,-2\sqrt{2})$C.$(-2\sqrt{2},+∞)$D.$[-2\sqrt{2},2\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知向量$\overrightarrow{AB}$=(2-k,-1),$\overrightarrow{AC}$=(1,k).
(1)若A,B,C三點(diǎn)共線,求k的值;
(2)若△ABC為直角三角形,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}通項(xiàng)an=2n-1,且數(shù)列{$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$}的前m項(xiàng)和為5,則m=60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在各項(xiàng)均為正數(shù)的數(shù)列{an}中,數(shù)列的前n項(xiàng)和為Sn,滿足Sn=1-nan(n∈N*
(1)求a1,a2,a3的值;
(2)由(1)猜想出數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)$f(x)=\frac{x^3}{3}+\frac{1}{x}$的導(dǎo)數(shù)f'(x)=( 。
A.$\frac{x^2}{3}+\frac{1}{x}$B.${x^2}-\frac{1}{x^2}$C.$-{x^2}-\frac{1}{x^2}$D.x2+lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若扇形的中心角α=60°,扇形半徑R=12cm,則陰影表示的弓形面積為24π-36$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2cos2x-sin2x.
(1)求f($\frac{π}{3}$)的值;
(2)求f(x)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案