精英家教網 > 高中數學 > 題目詳情
16.已知函數f(x)=$\sqrt{3}$sinxcosx-cos2x-m.
(Ⅰ)求函數f(x)的最小正周期與單調遞增區(qū)間;
(Ⅱ)若x∈[-$\frac{π}{12}$,$\frac{π}{2}$]時,方程f(x)=0有實數解,求實數m的取值范圍.

分析 (Ⅰ)利用二倍角以及輔助角公式基本公式將函數化為y=Asin(ωx+φ)的形式,再利用周期公式求函數的最小正周期,最后將內層函數看作整體,放到正弦函數的增區(qū)間上,解不等式得函數的單調遞增區(qū)間;
(2)x∈[-$\frac{π}{12}$,$\frac{π}{2}$]時,求出內層函數的取值范圍,方程f(x)=0有實數解,結合三角函數的圖象和性質,即可求實數m的取值范圍.

解答 解:(Ⅰ)函數f(x)=$\sqrt{3}$sinxcosx-cos2x-m.
化簡可得:f(x)=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x-$\frac{1}{2}$-m=sin(2x-$\frac{π}{6}$)-$\frac{1}{2}-m$.
∴函數f(x)的最小正周期T=$\frac{2π}{2}=π$.
令$-\frac{π}{2}+2kπ≤$2x-$\frac{π}{6}$$≤\frac{π}{2}+2kπ$,k∈Z.
得:$-\frac{π}{6}+kπ$≤x≤$\frac{π}{3}+kπ$.
∴函數f(x)的單調遞增區(qū)間為[$-\frac{π}{6}+kπ$,$\frac{π}{3}+kπ$],k∈Z.
(2)由x∈[-$\frac{π}{12}$,$\frac{π}{2}$],f(x)=sin(2x-$\frac{π}{6}$)-$\frac{1}{2}-m$.
∴2x-$\frac{π}{6}$∈[$-\frac{π}{3}$,$\frac{5π}{6}$],
∴$-\frac{\sqrt{3}}{2}$≤sin(2x-$\frac{π}{6}$)≤1,
方程f(x)=0有實數解,即sin(2x-$\frac{π}{6}$)=$\frac{1}{2}+m$.
∴$-\frac{\sqrt{3}}{2}$≤$\frac{1}{2}+m$≤1.
解得:$-\frac{\sqrt{3}+1}{2}$≤m≤$\frac{1}{2}$,
故得實數m的取值范圍是[$-\frac{\sqrt{3}+1}{2}$,$\frac{1}{2}$].

點評 本題主要考查對三角函數的化簡能力和三角函數的圖象和性質的運用,利用三角函數公式將函數進行化簡是解決本題的關鍵.屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

6.已知函數y=(1og3x)2-21og3x+3的定義域為[1,27],求函數的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.已知函數f(x)=2sinxcosx+2sin2x-1,(x∈R)
(1)求函數f(x)的最大值;
(2)若f($\frac{α}{2}$+$\frac{π}{4}$)=$\frac{4\sqrt{2}}{5}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),求cosα的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知函數f(x)=2|x+1|+|x-2|.
(1)求不等式f(x)≤6的解集;
(2)若a,b,c均為正實數,且滿足a+b+c=f(x)min,求證:$\frac{^{2}}{a}$+$\frac{{c}^{2}}$+$\frac{{a}^{2}}{c}$≥3.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且(4$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.設復數$z=\frac{-1-2i}{i}$,則復數z-1的摸為( 。
A.$\sqrt{10}$B.4C.$2\sqrt{3}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.設f(x)是定義在R上的奇函數,當x>0時,f(x)=2x+1,則$f({{{log}_{\frac{1}{4}}}3})$=-2$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知兩個等差數列2,4,6…及2,5,8,…由這兩個數列的共同項按從小到大的順序組成一個新數列{an},數列{bn}的前n項和為Sn=3n
(1)求a2,a3,并寫{an}的通項公式(可不用敘述過程);
(2)求出{bn}的通項公式,并求數列{anbn}的前n項和Tn
(3)記集合M=$\{n\left|{\frac{{{T_n}+8{S_n}-9}}{S_n^2}≥λ,n∈{N^+}}\right.\}$,若M的子集個數為3,求實數λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.用數學歸納法證明不等式1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}-1}$<n(n∈N*,n>4),第一步要證明的不等式中左邊有31項之和(填數字).

查看答案和解析>>

同步練習冊答案