分析 (1)利用二倍角公式和差角公式化簡(jiǎn)f(x),根據(jù)正弦函數(shù)的性質(zhì)得出f(x)的最大值;
(2)由f($\frac{α}{2}$+$\frac{π}{4}$)=$\frac{4\sqrt{2}}{5}$可得sin($α+\frac{π}{4}$)=$\frac{4}{5}$,根據(jù)α的范圍得出cos($α+\frac{π}{4}$)=-$\frac{3}{5}$,再利用差角公式計(jì)算cosα.
解答 解:(1)f(x)=sin2x-cos2x=$\sqrt{2}$sin(2x-$\frac{π}{4}$),
∴f(x)的最大值為$\sqrt{2}$.
(2)∵f($\frac{α}{2}$+$\frac{π}{4}$)=$\sqrt{2}$sin($α+\frac{π}{4}$)=$\frac{4\sqrt{2}}{5}$,
∴sin($α+\frac{π}{4}$)=$\frac{4}{5}$,
∵α∈($\frac{π}{4}$,$\frac{π}{2}$),∴$α+\frac{π}{4}$∈($\frac{π}{2}$,$\frac{3π}{4}$),
∴cos($α+\frac{π}{4}$)=-$\frac{3}{5}$,
∴cosα=cos[($α+\frac{π}{4}$)-$\frac{π}{4}$]=cos($α+\frac{π}{4}$)cos$\frac{π}{4}$+sin($α+\frac{π}{4}$)sin$\frac{π}{4}$=-$\frac{3}{5}×\frac{\sqrt{2}}{2}$+$\frac{4}{5}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{10}$.
點(diǎn)評(píng) 本題考查了三角恒等變換,三角函數(shù)求值,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | $\frac{{2-{2^{101}}}}{3}$ | C. | 2-2101 | D. | $\frac{2}{3}({{2^{100}}-1})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=ln|x| | B. | y=-x2+1 | C. | y=$\frac{1}{x}$ | D. | y=cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com