【題目】有一容量為50的樣本,數(shù)據(jù)的分組以及各組的頻數(shù)如下:
[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.
(1)列出樣本的頻率分布表.
(2)畫出頻率分布直方圖.
(3)根據(jù)頻率分布表,估計數(shù)據(jù)落在[15.5,24.5)內(nèi)的可能性約是多少?
【答案】(1) 見解析.(2) 見解析.(3)0.56.
【解析】試題分析:(1)由題中的所給數(shù)據(jù),列成表格,即可得到頻率分布表中的數(shù)據(jù);
(2)由頻率分布表中的數(shù)據(jù),在橫軸為數(shù)據(jù),縱軸為,即可得到頻率分布直方圖;
(3)為了估計數(shù)據(jù)在[15.5,24.5)的概率,只須求出頻率分布直方圖中數(shù)據(jù)在[15.5,24.5)的頻率和即可.
試題解析:(1)頻率分布表為:
分組 | 頻數(shù) | 頻率 |
[12.5,15.5) | 3 | 0.06 |
[15.5,18.5) | 8 | 0.16 |
[18.5,21.5) | 9 | 0.18 |
[21.5,24.5) | 11 | 0.22 |
[24.5,27.5) | 10 | 0.20 |
[27.5,30.5) | 5 | 0.10 |
[30.5,33.5] | 4 | 0.08 |
合計 | 50 | 1.00 |
(2)頻率分布直方圖如圖所示:
(3)數(shù)據(jù)落在[15.5,24.5)內(nèi)的可能性為=0.56.
點晴:本題考查的是用樣本估計總體的分布.解決總體分布估計問題的一般程序如下: (1)先確定分組的組數(shù)(獲得最大數(shù)據(jù)與最小數(shù)據(jù),再根據(jù)最大數(shù)據(jù)與最小數(shù)據(jù)之差除組距得組數(shù)); (2)分別計算各組的頻數(shù)及頻率(頻率);(3)畫出頻率分布直方圖,并作出相應(yīng)的估計.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos(2x-),x∈R.
(1)求函數(shù)f(x)單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[-, ]上的最小值和最大值,并求出取得最值時x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (e是自然對數(shù)的底數(shù)),h(x)=1﹣x﹣xlnx.
(1)求曲線y=f(x)在點A(1,f(1))處的切線方程;
(2)求h(x)的單調(diào)區(qū)間;
(3)設(shè)g(x)=xf′(x),其中f′(x)為f(x)的導(dǎo)函數(shù),證明:對任意x>0,g(x)<1+e﹣2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2014年山東省第二十三屆運動會將在濟(jì)寧召開,為調(diào)查我市某校高中生是否愿意提供志愿者服務(wù),用簡單隨機(jī)抽樣方法從該校調(diào)查了50人,結(jié)果如下:K
是否愿意提供志愿者服務(wù) | 愿意 | 不愿意 |
男生 | 20 | 5 |
女生 | 10 | 15 |
(Ⅰ)用分層抽樣的方法在愿意提供志愿者服務(wù)的學(xué)生中抽取6人,其中男生抽取多少人?
(Ⅱ)在(Ⅰ)中抽取的6人中任選2人,求恰有一名女生的概率;
(Ⅲ)你能否有99%的把握認(rèn)為該校高中生是否愿意提供志愿者服務(wù)與性別有關(guān)?
下面的臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
獨立性檢驗統(tǒng)計量 ,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】煉鋼是一個氧化降碳的過程,鋼水含碳量的多少直接影響冶煉時間的長短,因此必須掌握鋼水含碳量和冶煉時間的關(guān)系.如果已測得爐料熔化完畢時,鋼水的含碳量x與冶煉時間y(從爐料熔化完畢到出鋼的時間)的一些數(shù)據(jù),如下表所示:
x/0.01% | 104 | 180 | 190 | 177 | 147 | 134 | 150 | 191 | 204 | 121 |
y/min | 100 | 200 | 210 | 185 | 155 | 135 | 170 | 205 | 235 | 125 |
(1)作出散點圖,你能從散點圖中發(fā)現(xiàn)含碳量與冶煉時間的一般規(guī)律嗎?
(2)求回歸直線方程.
(3)預(yù)測當(dāng)鋼水含碳量為160時,應(yīng)冶煉多少分鐘?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面邊長都相等,A1在底面ABC上的射影D為BC的中點,則異面直線AB與CC1所成的角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐P﹣ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,點E在PD上,且PE:ED=2:1.
(Ⅰ)證明PA⊥平面ABCD;
(Ⅱ)求以AC為棱,EAC與DAC為面的二面角θ的大;
(Ⅲ)在棱PC上是否存在一點F,使BF∥平面AEC?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點O為極點,x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位,已知直線l的參數(shù)方程為 ,(t為參數(shù),0<θ<π),曲線C的極坐標(biāo)方程為ρsin2α﹣2cosα=0.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A,B兩點,當(dāng)θ變化時,求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣ x2﹣x+a,a∈R
(1)當(dāng)a=0時,求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在其定義域內(nèi)有兩個不同的極值點(極值點是指函數(shù)取極值時對應(yīng)的自變量的值),記為x1 , x2 , 且x1<x2 . (。┣骯的取值范圍;
(ⅱ)若不等式e1+λ<x1x 恒成立,求正實數(shù)λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com