分析 利用“乘1法”與基本不等式的性質(zhì)即可得出.
解答 解:∵x>0,y>0,且2x+y=1,
則$\frac{1}{x}$+$\frac{1}{y}$=(2x+y)$(\frac{1}{x}+\frac{1}{y})$=3+$\frac{y}{x}+\frac{2x}{y}$≥3+2$\sqrt{\frac{y}{x}•\frac{2x}{y}}$=3+2$\sqrt{2}$,當(dāng)且僅當(dāng)y=$\sqrt{2}x$=$\sqrt{2}$-1時(shí)取等號(hào).
其最小值為3+2$\sqrt{2}$.
故答案為:3+2$\sqrt{2}$.
點(diǎn)評(píng) 本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{a}$+$\overrightarrow$ | B. | $\overrightarrow{a}$-$\overrightarrow$ | C. | $\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$ | D. | $\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ﹁p:?x∈R,sin $x≤\frac{{\sqrt{3}}}{2}$ | B. | ﹁p:?x∈R,$sinx<\frac{{\sqrt{3}}}{2}$ | ||
C. | ﹁p:?x∈R | D. | ﹁p:?x∈R,$sinx≤\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | -4 | D. | $-\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com