17.已知函數(shù)f(x)=ex-2x.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)x>0時(shí),方程f(x)=kx2-2x無(wú)解,求k的取值范圍.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的方程求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(Ⅱ)當(dāng)x>0時(shí),有$k=\frac{e^x}{x^2}$,令$h(x)=\frac{e^x}{x^2}$,根據(jù)函數(shù)的單調(diào)性求出k的范圍即可.

解答 解:(Ⅰ)f'(x)=ex-2,
令f'(x)=0解得x=ln2,
易知f(x)在(-∞,ln2)上單調(diào)遞減,在(ln2,+∞)上單調(diào)遞增,
故當(dāng)x=ln2時(shí),f(x)有極小值f(ln2)=2-2ln2.…(5分)
(Ⅱ)方程f(x)=ex-2x=kx2-2x,整理得ex=kx2
當(dāng)x>0時(shí),$k=\frac{e^x}{x^2}$.…(6分)
令$h(x)=\frac{e^x}{x^2}$,則$h'(x)=\frac{{{e^x}•{x^2}-{e^x}•2x}}{x^4}=\frac{{{e^x}(x-2)}}{x^3}$,…(8分)
令h'(x)=0,解得x=2,
易得h(x)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,
所以x=2時(shí),φ(x)有最小值$φ(2)=\frac{e^2}{4}$,.…(10分)
而當(dāng)x越來(lái)越靠近0時(shí),φ(x)的值越來(lái)越大,
又當(dāng)x>0,方程f(x)=kx2-2x無(wú)解,
所以$k<\frac{e^2}{4}$..…(12分)

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)y=3-2cos(2x-$\frac{π}{3}$)的單調(diào)遞減區(qū)間是(  )
A.(kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$)(k∈Z)B.(kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$)(k∈Z)
C.(2kπ+$\frac{π}{3}$,2kπ+$\frac{4π}{3}$)(k∈Z)D.(2kπ-$\frac{π}{3}$,2kπ+$\frac{π}{6}$)(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={0,1,4},B={y|y=x2,x∈A},則A∪B=(  )
A.{0,1,16}B.{0,1}C.{1,16}D.{0,1,4,16}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為B,若△BF1F2的周長(zhǎng)為6,且點(diǎn)F1到直線BF2的距離為b.
(1)求橢圓C的方程;
(2)設(shè)A1,A2是橢圓C長(zhǎng)軸的兩個(gè)端點(diǎn),點(diǎn)P是橢圓C上不同于A1,A2的任意一點(diǎn),直線A1P交直線x=14于點(diǎn)M,求證:以MP為直徑的圓過(guò)點(diǎn)A2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知x>0,y>0,且2x+y=1,則$\frac{1}{x}$+$\frac{1}{y}$的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱(chēng)之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的表面積為( 。
A.4B.$6+4\sqrt{2}$C.$4+4\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)F1,F(xiàn)2為橢圓 $C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn),經(jīng)過(guò)F1的直線交橢圓C于A,B兩點(diǎn),若△F2AB是面積為$4\sqrt{3}$的等邊三角形,則橢圓C的方程為$\frac{{x}^{2}}{18}+\frac{{y}^{2}}{12}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知命題p:函數(shù)f(x)=lg(x2-2x+a)的定義域?yàn)镽,命題q:對(duì)于x∈[1,3],不等式ax2-ax-6+a<0恒成立,若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列命題錯(cuò)誤的是( 。
A.在回歸分析模型中,殘差平方和越大,說(shuō)明模型的擬合效果越好
B.線性相關(guān)系數(shù)|r|越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱
C.由變量x和y的數(shù)據(jù)得到其回歸直線方程l:$\widehat{y}$=$\widehat$x+a,則l一定經(jīng)過(guò)P($\overline{x}$,$\overline{y}$)
D.在回歸直線方程$\widehat{y}$=0.1x+1中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量$\widehat{y}$增加0.1個(gè)單位.

查看答案和解析>>

同步練習(xí)冊(cè)答案