分析 利用兩角和與差將函數(shù)化為y=Asin(ωx+φ)的形式,根據(jù)f(x)在區(qū)間$({\frac{π}{6},\frac{2π}{3}})$上單調(diào)遞減,可得φ的最大值.
解答 解:函數(shù)f(x)=sin(3x+3φ)-2sin(x+φ)cos(2x+2φ),其中|φ|<π,
化簡可得f(x)=sin[(2x+2φ)+(x+φ)]-2sin(x+φ)cos(2x+2φ)=sin(2x+2φ)cos(x+φ)-sin(x+φ)cos(2x+2φ)=sin(x+φ)
由$\frac{π}{2}+2kπ$≤x+φ$≤\frac{3π}{2}+2kπ$,k∈Z
可得:$\frac{π}{2}+2kπ$-φ≤x$≤\frac{3π}{2}+2kπ$-φ.
∵f(x)在區(qū)間$({\frac{π}{6},\frac{2π}{3}})$上單調(diào)遞減,
∴$\frac{π}{2}+2kπ$-φ$≤\frac{π}{6}$,且$\frac{3π}{2}+2kπ$-φ$≥\frac{2π}{3}$,
解得:2kπ≤φ$≤\frac{5π}{6}$,
|φ|<π,
∴φ的最大值為$\frac{5π}{6}$.
故答案為$\frac{5π}{6}$.
點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運用,利用兩角和與差的公式.屬于中檔題
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | n | B. | -n | C. | 0 | D. | 不存在 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com