18.若存在兩個正實數(shù)x、y,使得等式x+m(y-2ex)(lnx-lny)=0成立,其中e為自然對數(shù)的底數(shù),則實數(shù)m的取值范圍是(-∞,-$\frac{1}{e}$]∪(0,+∞).

分析 根據(jù)函數(shù)與方程的關(guān)系將方程進(jìn)行轉(zhuǎn)化,利用換元法轉(zhuǎn)化為方程有解,構(gòu)造函數(shù)求函數(shù)的導(dǎo)數(shù),利用函數(shù)極值和單調(diào)性的關(guān)系進(jìn)行求解即可.

解答 解:∵x+m(y-2ex)(lnx-lny)=0,
∴x+m(y-2ex)ln$\frac{x}{y}$=0,
即1+m($\frac{y}{x}-2e$)ln$\frac{x}{y}$=0,
令$\frac{y}{x}=t$,則1-m(t-2e)lnt=0,
∴m=$\frac{1}{(t-2e)lnt}$,即$\frac{1}{m}$=(t-2e)lnt,
令f(t)=(t-2e)lnt,則f′(t)=lnt+1-$\frac{2e}{t}$是增函數(shù),
∵f′(e)=lne+1-2=0,
∴當(dāng)0<t<e時,f′(t)<0,當(dāng)t>e時,f′(t)>0,
∴f(t)在(0,e)上單調(diào)遞減,在(e,+∞)上單調(diào)遞增,
∴當(dāng)t=e時,f(t)取得最小值f(e)=-e,
∴$\frac{1}{m}$≥-e,
解得m>0或m≤-$\frac{1}{e}$.
故答案為:(-∞,-$\frac{1}{e}$]∪(0,+∞).

點(diǎn)評 本題主要考查不等式恒成立問題,根據(jù)函數(shù)與方程的關(guān)系,轉(zhuǎn)化為兩個函數(shù)相交問題,利用構(gòu)造法和導(dǎo)數(shù)法求出函數(shù)的極值和最值是解決本題的關(guān)鍵.綜合性較強(qiáng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC,三內(nèi)角 A,B,C的對邊分別為a,b,c,已知A=30°,$b=\sqrt{3},a=1$,則c=1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.德國數(shù)學(xué)家科拉茨1937年提出一個著名的猜想:任給一個正整數(shù)n,如果n是偶數(shù),就將它減半(即$\frac{n}{2}$);如果n是奇數(shù),則將它乘3加1(即3n+1),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.對于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請你研究:如果對正整數(shù)n(首項)按照上述規(guī)則旅行變換后的第9項為1(注:1可以多次出現(xiàn)),則n的所有不同值的個數(shù)為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)等比數(shù)列{an}的前n項和為Sn,若$\frac{{S}_{6}}{{S}_{3}}$=7,則$\frac{{S}_{9}}{{S}_{6}}$=( 。
A.2B.$\frac{7}{3}$C.$\frac{13}{4}$D.$\frac{43}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.6人排成一排,若甲,乙,丙順序一定,有多少種不同的排法( 。
A.6B.24C.120D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知等比數(shù)列{an}的各項均為正數(shù),且a1+2a2=1,且a32=4a2•a6
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log2a1+log2a2+log2a3+…+log2an,求數(shù)列$\{\frac{1}{b_n}\}$的前n項和;
(3)設(shè)cn=$\frac{{{b_n}•{a_n}}}{n}$,求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=cosxsin(x+\frac{π}{3})-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{4}$.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)設(shè)g(x)=2af(x)+b,若g(x)在[-$\frac{π}{4}$,$\frac{π}{4}}$]上的值域為[2,4],求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)是橢圓4x2+y2=1的一個焦點(diǎn),則此拋物線的焦點(diǎn)到準(zhǔn)線的距離是(  )
A.$2\sqrt{3}$B.$\sqrt{3}$C.$\frac{1}{2}\sqrt{3}$D.$\frac{1}{4}\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知$B=\frac{π}{4}$,$asinB=\sqrt{3}bcosA$;
(1)求A的大。
(2)若b=4,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案