已知數(shù)列的前n項的和為,且,
(1)證明數(shù)列是等比數(shù)列
(2)求通項與前n項的和;
(3)設(shè)若集合M=恰有4個元素,求實數(shù)的取值范圍.
(1)證明見解析;(2),;(3).
解析試題分析:(1)可以根據(jù)等比數(shù)列的定義證明,用后項比前項,即證是常數(shù),這由已知易得,同時要說明;(2)由(1)是公比為的等比數(shù)列,因此它的通項公式可很快求得,即,從而,這個數(shù)列可以看作是一個等差數(shù)列和一個等比數(shù)列對應(yīng)項相乘所得,因此其前項和可用錯位相減法求出;(3)這里我們首先要求出,由(2)可得,集合M=恰有4個元素,即中只有4個不同的值不小于,故要研究數(shù)列中元素的大小,可從單調(diào)性考慮,作差,可見,,再計算后發(fā)現(xiàn),因此應(yīng)該滿足.
試題解析:(1)因為,當(dāng)時,.
又,()為常數(shù),
所以是以為首項,為公比的等比數(shù)列.
(2)由是以為首項,為公比的等比數(shù)列得,
所以.
由錯項相減得.
(3)因為,所以
由于
所以,,.
因為集合恰有4個元素,且,
所以.
考點:(1)等比數(shù)列的定義;(2)錯位相減法求和;(3)數(shù)列的單調(diào)性.
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等比數(shù)列
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前5項的和;
(3)若,求Tn的最大值及此時n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若函數(shù)滿足:集合中至少存在三個不同的數(shù)構(gòu)成等比數(shù)列,則稱函數(shù)是等比源函數(shù).
(1)判斷下列函數(shù):①;②中,哪些是等比源函數(shù)?(不需證明)
(2)證明:函數(shù)是等比源函數(shù);
(3)判斷函數(shù)是否為等比源函數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的首項.
(1)求證:數(shù)列為等比數(shù)列;
(2)記,若,求最大正整數(shù)的值;
(3)是否存在互不相等的正整數(shù),使成等差數(shù)列,且成等比數(shù)列?如果存在,請給予證明;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項均為正數(shù)的數(shù)列前n項和為,首項為,且等差數(shù)列。
(1)求數(shù)列的通項公式;
(2)若,設(shè),求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項和為Sn,a1=1,Sn+1=4an+1,設(shè)bn=an+1-2an.證明:數(shù)列{bn}是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義:若數(shù)列{An}滿足An+1=,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
(1)證明:數(shù)列{2an+1}是 “平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列.
(2)設(shè)(1)中“平方遞推數(shù)列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項公式及Tn關(guān)于n的表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com