分析 由題意設(shè)出與直線x+2y-10=0平行的直線方程為直線x+2y+m=0,聯(lián)立直線方程和橢圓方程,利用判別式等于0求得m,進一步求得M的坐標.
解答 解:設(shè)與直線x+2y-10=0平行的直線方程為直線x+2y+m=0.
聯(lián)立$\left\{\begin{array}{l}{x+2y+m=0}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,得25x2+18mx+9m2-144=0.
由△=(18m)2-100(9m2-144)=0,得m=±5.
則當m=5時,直線x+2y-5=0與橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$的切點M到直線x+2y-10=0的距離最小,
此時25x2+18mx+9m2-144=0化為25x2+90x-81=0.
解得x=$\frac{9}{5}$,代入x+2y-5=0得y=$\frac{8}{5}$.
∴點M的坐標為$(\frac{9}{5},\frac{8}{5})$.
故答案為:$(\frac{9}{5},\frac{8}{5})$.
點評 本題考查橢圓的簡單性質(zhì),考查了數(shù)學轉(zhuǎn)化思想方法,考查計算能力,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{2}$+$\frac{1}{2}$i | B. | $\frac{1}{2}$+$\frac{1}{2}$i | C. | $\frac{1}{2}$-$\frac{1}{2}$i | D. | -$\frac{1}{2}$-$\frac{1}{2}$i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,1] | B. | (-∞,-1]∪[1,+∞) | C. | [-1,2] | D. | [3,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
x | -1 | 0 | 1 | 2 | 3 |
ex | 0.37 | 1 | 2.72 | 7.39 | 20.09 |
x+6 | 5 | 6 | 7 | 8 | 9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{4}$ | B. | $\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | -$\frac{4}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com