分析 (1)甲廠抽取的樣本中優(yōu)等品有6件,乙廠抽取的樣本中優(yōu)等品率有5件,由此能求出甲、乙兩廠產(chǎn)品的優(yōu)等品率.
(2)由題意知X的可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列和數(shù)學(xué)期望.
(3)抽到的優(yōu)等品甲廠恰比乙廠多2件的概率,包括A、B兩個基本事件,其中事件A=“甲廠抽到2件優(yōu)等品,乙廠沒有抽到優(yōu)等品”,事件B=“甲廠抽到3件優(yōu)等品,乙廠抽到1件優(yōu)等品”,由此能求出抽到的優(yōu)等品甲廠恰比乙廠多2件的概率.
解答 解:(1)甲廠抽取的樣本中優(yōu)等品有6件,
∴甲廠產(chǎn)品的優(yōu)等品率為$\frac{6}{10}=\frac{3}{5}$,
乙廠抽取的樣本中優(yōu)等品率有5件,
∴乙廠產(chǎn)品的優(yōu)等品率為$\frac{5}{10}=\frac{1}{2}$.
(2)由題意知X的可能取值為0,1,2,3,
P(X=0)=$\frac{{C}_{4}^{2}}{{C}_{10}^{2}}•\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$=$\frac{1}{15}$,
P(X=1)=$\frac{{C}_{6}^{1}{C}_{4}^{1}}{{C}_{10}^{2}}•\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$+$\frac{{C}_{4}^{2}}{{C}_{10}^{2}}•\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$=$\frac{1}{3}$,
P(X=2)=$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}•\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$+$\frac{{C}_{6}^{1}{C}_{4}^{1}}{{C}_{10}^{2}}$•$\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$=$\frac{13}{30}$,
P(X=3)=$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}•\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$=$\frac{1}{6}$.
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P | $\frac{1}{15}$ | $\frac{1}{3}$ | $\frac{13}{30}$ | $\frac{1}{6}$ |
點評 本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時要認真審題,注意n次獨立重復(fù)試驗中事件A恰好發(fā)生k次的概率計算公式的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ln2+$\frac{5}{8}$ | B. | ln2-$\frac{1}{2}$ | C. | ln2+$\frac{1}{8}$ | D. | ln2-$\frac{3}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 7 | C. | $\frac{5}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{4}$ | B. | -$\frac{\sqrt{2}}{4}$ | C. | 2$\sqrt{2}$ | D. | -2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $x=\frac{π}{12}$ | B. | $x=\frac{π}{6}$ | C. | $x=\frac{π}{3}$ | D. | $x=\frac{5π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | -1 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com