分析 (Ⅰ)將原極坐標(biāo)方程ρcos2θ=4sinθ兩邊同時(shí)乘以ρ,利用極坐標(biāo)與直角坐標(biāo)之間的關(guān)系即可得出其直角坐標(biāo)方程;
(Ⅱ)求出直線l的直角坐標(biāo)方程,代入弦長(zhǎng)公式計(jì)算即可.
解答 解:(Ⅰ)由ρsin2θ=4cosθ得,ρ2sin2θ=4ρcosθ,
即曲線C的直角坐標(biāo)方程為y2=4x;
(Ⅱ)∵直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=\sqrt{3}t}\end{array}\right.$ (t為參數(shù)),
∴直線l的直角坐標(biāo)方程是:y=$\sqrt{3}$(x-1),
如圖示:
,
由$\left\{\begin{array}{l}{y=\sqrt{3}(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,得:3x2-10x+3=0,
故x1+x2=$\frac{10}{3}$,x1x2=1,
故|AB|=$\sqrt{1{+k}^{2}}$|x1-x2|=$\sqrt{1+3}$$\sqrt{{(\frac{10}{3})}^{2}-4}$=$\frac{16}{3}$.
點(diǎn)評(píng) 本題考查了參數(shù)方程、極坐標(biāo)方程和普通方程的轉(zhuǎn)化,考查弦長(zhǎng)公式,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -$\frac{5}{3}$ | C. | -$\frac{1}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\frac{1}{x}$ | B. | y=(x-1)2 | C. | y=2-x | D. | y=log2(x+2) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com