4.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y≤1\\ x-y≤1\\ x≥0\end{array}\right.$,且目標(biāo)函數(shù)z=ax+2y的最大值為2,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,0]B.(-∞,2]C.10,+∞)D.12,+∞)

分析 畫(huà)出實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y≤1\\ x-y≤1\\ x≥0\end{array}\right.$,的平面區(qū)域,然后分析平面區(qū)域里各個(gè)角點(diǎn),進(jìn)一步分目標(biāo)函數(shù)z=ax+2y的最大值為2,構(gòu)造一個(gè)關(guān)于a的不等式,解不等式即可求出a的范圍.

解答 解:滿足實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y≤1\\ x-y≤1\\ x≥0\end{array}\right.$,的平面區(qū)域,如下圖所示:
由圖可知,求出三條邊界直線的交點(diǎn)分別為:
(0,1),A(1,0),(0,-1).
由目標(biāo)函數(shù)z=ax+2y的最大值為2,
將這三點(diǎn)分別代入z=ax+y,
將這三點(diǎn)分別代入z=ax+y,
可知A是最優(yōu)解對(duì)應(yīng)點(diǎn),可得:a+0≤2.
解得a≤2.
故選:B.

點(diǎn)評(píng) 在解決線性規(guī)劃的小題時(shí),我們常用“角點(diǎn)法”,其步驟為:①由約束條件畫(huà)出可行域⇒②求出可行域各個(gè)角點(diǎn)的坐標(biāo)⇒③將坐標(biāo)逐一代入目標(biāo)函數(shù)⇒④驗(yàn)證,求出最優(yōu)解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,且$\left\{{\frac{S_n}{n+1}}\right\}$是首項(xiàng)和公差均為$\frac{1}{2}$的等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若${b_n}=\frac{{{a_{n+1}}^2+{a_{n+2}}^2}}{{{a_{n+1}}•{a_{n+2}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.對(duì)具有線性相關(guān)關(guān)系的變量x、y,有一組觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,3,…,8),其回歸方程為y=$\frac{1}{6}$x+a,且x1+x2+x3+…+x8=6,y1+y2+y3+…+y8=9,則實(shí)數(shù)a的值是( 。
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.圓x2+y2+4x-2y+$\frac{24}{5}$=0上的點(diǎn)到直線3x+4y=0的距離的最大值是( 。
A.$\frac{3}{5}$B.$\frac{1}{5}$C.$\frac{2+\sqrt{5}}{5}$D.$\frac{2-\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知角θ的終邊在射線y=2x(x≤0)上,則sinθ+cosθ=-$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,點(diǎn)A的坐標(biāo)為(1,0),函數(shù)y=ax2過(guò)點(diǎn)C(2,4),若在矩形ABCD內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率等于$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.用數(shù)學(xué)歸納法證明1+3+5+…+(2n-1)=n2(n∈n*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)數(shù)列{an}(n=1,2,3…)的前n項(xiàng)和Sn滿足Sn=2an-a1,且a1,a2+1,a3成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)bn=$\frac{({a}_{n})^{2}-1}{{S}_{n}}$,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)a,b,c,d為正數(shù),且a+b+c+d=1.證明:
(1)${a^2}+{b^2}+{c^2}+{d^2}≥\frac{1}{4}$;
(2)$\frac{a^2}+\frac{b^2}{c}+\frac{c^2}q2h23s7+\frac{d^2}{a}≥1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案