3.已知集合M={-1,0,1},N={x|x=ab,a,b∈M,且a≠b},則集合M與集合N的關系是(  )
A.M=NB.M∩N=NC.M∪N=ND.M∩N=∅

分析 用列舉法寫出集合N,再判斷集合M與集合N的關系.

解答 解:集合M={-1,0,1},
N={x|x=ab,a,b∈M,且a≠b}={-1,0},
集合M∩N=N.
故選:B.

點評 本題考查了集合的運算與應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知O為坐標原點,圓M:(x+1)2+y2=16,定點F(1,0),點N是圓M上一動點,線段NF的垂直平分線交圓M的半徑MN于點Q,點Q的軌跡為E.
(1)求曲線E的方程;
(2)已知點P是曲線E上但不在坐標軸上的任意一點,曲線E與y軸的交點分別為B1、B2,直線B1P和B2P分別與x軸相交于C、D兩點,請問線段長之積|OC|•|OD|是否為定值?如果是請求出定值,如果不是請說明理由;
(3)在(2)的條件下,若點C坐標為(-1,0),過點C的直線l與E相交于A、B兩點,求△ABD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知三棱錐A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.
(1)求證:平面ABC⊥平面ACD;
(2)若E為AB中點,求二面角A-CE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖<1>:在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,AD=6,CE⊥AD于E點,把△DEC沿CE折到D′EC的位置,使D′A=2$\sqrt{3}$,如圖<2>:若G,H分別為D′B,D′E的中點.
(Ⅰ)求證:GH⊥D′A;
(Ⅱ)求三棱錐C-D′BE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.以下命題:
①“x=1”是“x2-3x+2=0”的充分不必要條件;
②命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
③對于命題p:?x>0,使得x2+x+1<0,則¬p:?x≤0,均有x2+x+1≥0
④若p∨q為假命題,則p,q均為假命題
其中正確命題的序號為①②④(把所有正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知數(shù)列{an}中,a3=5,a5+a6=20,且2${\;}^{{a}_{n}}$,2${\;}^{{a}_{n+1}}$,2${\;}^{{a}_{n+2}}$成等比數(shù)列,數(shù)列{bn}滿足bn=an-(-1)nn.
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設sn是數(shù)列{bn}前n項和,求sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.復數(shù)z滿足(z+2)i=3-2i,則z的共軛復數(shù)為(  )
A.4+3iB.4-3iC.-4+3iD.-4-3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.雙十一期間某電商準備矩形促銷市場調(diào)查,該電商決定活動,市場調(diào)查,該電商決定從2種服裝商品,2種家電商品,3種日用商品中,選出3種商品進行促銷活動.
(1)試求選出的3種商品中至多有一種是家電商品的概率;
(2)電商對選出的某商品采用促銷方案是有獎銷售,顧客購買該商品,一共有3次抽獎的機會,若中獎,則每次都活動數(shù)額為40元的獎券,假設顧客每次抽獎時中獎的概率都是$\frac{1}{2}$,且每次中獎互不影響,設一位顧客中獎金額為隨機變量ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.命題p:若a>b,則ac2>bc2;命題q:?x0>0,使得x0-1+lnx0=0,則下列命題為真命題的是(  )
A.p∧qB.(¬p)∧qC.p∨(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

同步練習冊答案