1.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{4x-y-2≤0}\\{x-y+1≥0}\\{x≥0}\\{y≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)最大值為1,則$\frac{2}{a}+\frac{1}$的最小值8.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得a+2b=1,再由基本不等式求最值.

解答 解:由約束條件$\left\{\begin{array}{l}{4x-y-2≤0}\\{x-y+1≥0}\\{x≥0}\\{y≥0}\end{array}\right.$作出可行域如圖,

聯(lián)立,解得A(1,2).
化目標(biāo)函數(shù)z=ax+by為y=$-\frac{a}x+\frac{z}$,
由圖可知,當(dāng)直線y=$-\frac{a}x+\frac{z}$過A時(shí),直線在y軸上的截距最大,z有最大值為a+2b=1.
∴$\frac{2}{a}+\frac{1}$=($\frac{2}{a}+\frac{1}$)(a+2b)=4+$\frac{4b}{a}+\frac{a}$$≥4+2\sqrt{\frac{4b}{a}•\frac{a}}=8$.
當(dāng)且僅當(dāng)a=2b時(shí)上式“=”成立.
∴$\frac{2}{a}+\frac{1}$的最小值為8.
故答案為:8.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,訓(xùn)練了利用基本不等式求最值,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=|x-3|,g(x)=|x-2|
(1)解不等式f(x)+g(x)<2;
(2)對(duì)于實(shí)數(shù)x,y,若f(x)≤1,g(y)≤1,證明:|x-2y+1|≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,已知點(diǎn)R的極坐標(biāo)為(2$\sqrt{2}$,$\frac{π}{4}$),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(1)求點(diǎn)R的直角坐標(biāo),化曲線C的參數(shù)方程為普通方程;
(2)設(shè)P為曲線C上一動(dòng)點(diǎn),以PR為對(duì)角線的矩形PQRS的一邊垂直于極軸,求矩形PQRS周長(zhǎng)的最小值,及此時(shí)P點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果是a=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)f'(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f''(x)是f'(x)的導(dǎo)數(shù),若方程f''(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.已知:任何三次函數(shù)既有拐點(diǎn),又有對(duì)稱中心,且拐點(diǎn)就是對(duì)稱中心.設(shè)$f(x)=\frac{1}{3}{x^3}-2{x^2}+\frac{8}{3}x+2$,數(shù)列{an}的通項(xiàng)公式為an=n-1007,則$\sum_{i=1}^{2017}{f({a_i})}$=( 。
A.2017B.2018C.8068D.4034

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{x}{{{e^{x.}}}}$-mx(m∈R).
(Ⅰ)當(dāng)m=0時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)b>a>0時(shí),總有$\frac{f(b)-f(a)}{b-a}$>1成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.賭博有陷阱.某種賭博游戲每局的規(guī)則是:參與者現(xiàn)在從標(biāo)有5、6、7、8、9的相同小球中隨機(jī)摸取一個(gè),將小球上的數(shù)字作為其賭金(單位:元);隨后放回該小球,再隨機(jī)摸取兩個(gè)小球,將兩個(gè)小球上數(shù)字之差的絕對(duì)值的2倍作為其資金(單位:元).若隨機(jī)變量ξ和η分別表示參與者在每一局賭博游戲中的賭金與資金,則Eξ-Eη=3(元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.醫(yī)學(xué)上某種還沒有完全攻克的疾病,治療時(shí)需要通過藥物控制其中的兩項(xiàng)指標(biāo)H和V.現(xiàn)有..三種不同配方的藥劑,根據(jù)分析,A,B,C三種藥劑能控制H指標(biāo)的概率分別為0.5,0.6,0.75,能控制V指標(biāo)的概率分別是0.6,0.5,0.4,能否控制H指標(biāo)與能否控制V指標(biāo)之間相互沒有影響.
(Ⅰ)求A,B,C三種藥劑中恰有一種能控制H指標(biāo)的概率;
(Ⅱ)某種藥劑能使兩項(xiàng)指標(biāo)H和V都得到控制就說該藥劑有治療效果.求三種藥劑中有治療效果的藥劑種數(shù)X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{lnx}{ax}$(a>0).
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若$f(x)<\frac{1}{{\sqrt{x}}}$恒成立,求a的取值范圍;
(Ⅲ)證明:總存在x0,使得當(dāng)x∈(x0,+∞),恒有f(x)<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案