9.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果是a=( 。
A.2B.4C.6D.8

分析 根據(jù)框圖的流程依次運(yùn)行程序,直到滿足條件i≥5,確定輸出a的值,即可得解.

解答 解:模擬程序的運(yùn)行,可得
a=10,i=1
不滿足條件i≥5,不滿足條件a是奇數(shù),a=5,i=2
不滿足條件i≥5,滿足條件a是奇數(shù),a=16,i=3
不滿足條件i≥5,不滿足條件a是奇數(shù),a=8,i=4
不滿足條件i≥5,不滿足條件a是奇數(shù),a=4,i=5
滿足條件i≥5,退出循環(huán),輸出a的值為4.
故選:B.

點(diǎn)評(píng) 本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程依次運(yùn)行程序是解答此類問題的常用方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓E:mx2+y2=1(m>0).
(Ⅰ)若橢圓E的右焦點(diǎn)坐標(biāo)為$(\sqrt{3},0)$,求m的值;
(Ⅱ)由橢圓E上不同三點(diǎn)構(gòu)成的三角形稱為橢圓的內(nèi)接三角形.若以B(0,1)為直角頂點(diǎn)的橢圓E的內(nèi)接等腰直角三角形恰有三個(gè),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在等比數(shù)列{an}中,a1=2,公比q=2,若am=a1a2a3a4(m∈N*),則m=( 。
A.11B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F1,離心率為$\frac{\sqrt{2}}{2}$,過點(diǎn)F1且與x軸垂直的直線被橢圓截得的線段長為$\sqrt{2}$.
(1)求橢圓C的方程;
(2)若y2=4x上存在兩點(diǎn)M,N,橢圓C上存在兩個(gè)點(diǎn)P,Q,滿足:P,Q,F(xiàn)1三點(diǎn)共線,M,N,F(xiàn)1三點(diǎn)共線且PQ⊥MN,求四邊形PMQN的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知x,y∈R,( 。
A.若|x-y2|+|x2+y|≤1,則${(x+\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$
B.若|x-y2|+|x2-y|≤1,則${(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$
C.若|x+y2|+|x2-y|≤1,則${(x+\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$
D.若|x+y2|+|x2+y|≤1,則${(x-\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若圓x2+y2-4x-4y-10=0上至少有三個(gè)不同的點(diǎn)到直線l:y=x+b的距離為$2\sqrt{2}$,則b取值范圍為[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{4x-y-2≤0}\\{x-y+1≥0}\\{x≥0}\\{y≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)最大值為1,則$\frac{2}{a}+\frac{1}$的最小值8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$.設(shè)過點(diǎn)F2的直線l被橢圓C截得的線段為RS,當(dāng)l⊥x軸時(shí),|RS|=3
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)T(4,0),證明:當(dāng)直線l變化時(shí),直線TS與TR的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在矩形ABCD中,|AB|=4,|AD|=2,O為AB中點(diǎn),P,Q分別是AD和CD的中點(diǎn),且直線AQ與BP的交點(diǎn)在橢圓E:$\frac{x^2}{a^2}$+y2=1(a>0)上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)R為橢圓E的右頂點(diǎn),T為橢圓E的上頂點(diǎn),M為橢圓E第一象限部分上一點(diǎn),求梯形ORMT面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案