【題目】如圖,三棱柱的所有棱長(zhǎng)都是2,面,,分別是,的中點(diǎn).
(1)求證:平面;
(2)求三棱錐的體積.
【答案】(1)詳見(jiàn)解析;(2).
【解析】
(1)推導(dǎo)出,從而平面平面,進(jìn)而平面,,再求出,由此能證明平面.
(2)本問(wèn)方法較多,可用割補(bǔ)法,轉(zhuǎn)換頂點(diǎn)法,構(gòu)造法等,其中割補(bǔ)法較為方便,將轉(zhuǎn)化為,即可求解.
解:(1)∵,是的中點(diǎn),
∴,
∵三棱柱中平面,
∴平面平面,且平面平面,
∴平面,
∵平面,
∴.
又∵在正方形中,,分別是,的中點(diǎn),
∴,
又,
∴平面.
(2)解法一(割補(bǔ)法):
.
解法二(利用平行頂點(diǎn)輪換):
∵,
∴,
∴
.
解法三(利用對(duì)稱頂點(diǎn)輪換):
連結(jié),交于點(diǎn),
∵為的中點(diǎn),
∴點(diǎn)到平面的距離等于點(diǎn)到平面的距離.
∴
.
解法四(構(gòu)造法):
連結(jié),交于點(diǎn),則為的中點(diǎn),再連結(jié).
由題意知在中,,,所以,且,
又,,所以,所以,
又,
∴面,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】秉承提升學(xué)生核心素養(yǎng)的理念,學(xué)校開(kāi)設(shè)以提升學(xué)生跨文化素養(yǎng)為核心的多元文化融合課程.選某藝術(shù)課程的學(xué)生唱歌、跳舞至少會(huì)一項(xiàng),已知會(huì)唱歌的有人,會(huì)跳舞的有人,現(xiàn)從中選人,設(shè)為選出的人中既會(huì)唱歌又會(huì)跳舞的人數(shù),且
(1)求選該藝術(shù)課程的學(xué)生人數(shù);
(2)寫出的概率分布列并計(jì)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別過(guò)橢圓左、右焦點(diǎn)的動(dòng)直線相交于點(diǎn),與橢圓分別交于與不同四點(diǎn),直線的斜率滿足, 已知與軸重合時(shí), .
(1)求橢圓的方程;
(2)是否存在定點(diǎn)使得為定值,若存在,求出點(diǎn)坐標(biāo)并求出此定值,若不存在,
說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第十一屆全國(guó)少數(shù)民族傳統(tǒng)體育運(yùn)動(dòng)會(huì)在河南鄭州舉行,某項(xiàng)目比賽期間需要安排3名志愿者完成5項(xiàng)工作,每人至少完成一項(xiàng),每項(xiàng)工作由一人完成,則不同的安排方式共有多少種
A.60B.90C.120D.150
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】水污染現(xiàn)狀與工業(yè)廢水排放密切相關(guān),某工廠深人貫徹科學(xué)發(fā)展觀,努力提高污水收集處理水平,其污水處理程序如下:原始污水必先經(jīng)過(guò)A系統(tǒng)處理,處理后的污水(A級(jí)水)達(dá)到環(huán)保標(biāo)準(zhǔn)(簡(jiǎn)稱達(dá)標(biāo))的概率為p(0<p<1).經(jīng)化驗(yàn)檢測(cè),若確認(rèn)達(dá)標(biāo)便可直接排放;若不達(dá)標(biāo)則必須進(jìn)行B系統(tǒng)處理后直接排放.
某廠現(xiàn)有4個(gè)標(biāo)準(zhǔn)水量的A級(jí)水池,分別取樣、檢測(cè),多個(gè)污水樣本檢測(cè)時(shí),既可以逐個(gè)化驗(yàn),也可以將若干個(gè)樣本混合在一起化驗(yàn),混合樣本中只要有樣本不達(dá)標(biāo),則混合樣本的化驗(yàn)結(jié)果必不達(dá)標(biāo),若混合樣本不達(dá)標(biāo),則該組中各個(gè)樣本必須再逐個(gè)化驗(yàn);若混合樣本達(dá)標(biāo),則原水池的污水直接排放
現(xiàn)有以下四種方案:
方案一:逐個(gè)化驗(yàn);
方案二:平均分成兩組化驗(yàn);方案三;三個(gè)樣本混在一起化驗(yàn),剩下的一個(gè)單獨(dú)化驗(yàn);
方案四:四個(gè)樣本混在一起化驗(yàn).
化驗(yàn)次數(shù)的期望值越小,則方案越"優(yōu)".
(1)若,求2個(gè)A級(jí)水樣本混合化驗(yàn)結(jié)果不達(dá)標(biāo)的概率;
(2)①若,現(xiàn)有4個(gè)A級(jí)水樣本需要化驗(yàn),請(qǐng)問(wèn):方案一、二、四中哪個(gè)最“優(yōu)"?②若“方案三”比“方案四"更“優(yōu)”,求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等比數(shù)列{an}中,an>0 (n∈N ),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3與a5的等比中項(xiàng)為2.
(1) 求數(shù)列{an}的通項(xiàng)公式;
(2) 設(shè),數(shù)列{bn}的前n項(xiàng)和為Sn,當(dāng)最大時(shí),求n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義一:對(duì)于一個(gè)函數(shù),若存在兩條距離為d的直線和,使得在時(shí),恒成立,則稱函數(shù)在D內(nèi)有一個(gè)寬度為d的通道.定義二:若一個(gè)函數(shù),對(duì)于任意給定的正數(shù),都存在一個(gè)實(shí)數(shù),使得函數(shù)在內(nèi)有一個(gè)寬度為的通道,則稱在正無(wú)窮處有永恒通道.下列函數(shù):①;②;③.其中在正無(wú)窮處有永恒通道的函數(shù)的個(gè)數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種水箱用的“浮球”是由兩個(gè)相同半球和一個(gè)圓柱筒組成,它的軸截面如圖所示,已知半球的直徑是,圓柱筒高,為增強(qiáng)該“浮球”的牢固性,給“浮球”內(nèi)置一“雙蝶形”防壓卡,防壓卡由金屬材料桿,,,,,及焊接而成,其中,分別是圓柱上下底面的圓心,,,,均在“浮球”的內(nèi)壁上,AC,BD通過(guò)“浮球”中心,且、均與圓柱的底面垂直.
(1)設(shè)與圓柱底面所成的角為,試用表示出防壓卡中四邊形的面積,并寫出的取值范圍;
(2)研究表明,四邊形的面積越大,“浮球”防壓性越強(qiáng),求四邊形面積取最大值時(shí),點(diǎn)到圓柱上底面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,是自然對(duì)數(shù)的底數(shù)).
(1)若函數(shù)在點(diǎn)處的切線方程為,試確定函數(shù)的單調(diào)區(qū)間;
(2)①當(dāng),時(shí),若對(duì)于任意,都有恒成立,求實(shí)數(shù)的最小值;②當(dāng)時(shí),設(shè)函數(shù),是否存在實(shí)數(shù),使得?若存在,求出的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com