11.函數(shù)y=sin(3x+$\frac{π}{4}$)+$\sqrt{3}$cos(3x+$\frac{π}{4}$)的最小正周期是( 。
A.B.C.$\frac{2π}{3}$D.$\frac{π}{3}$

分析 利用兩角和的正弦公式化簡函數(shù)的解析式,再利用函數(shù)y=Asin(ωx+φ)的周期為$\frac{2π}{ω}$,得出結(jié)論.

解答 解:函數(shù)y=sin(3x+$\frac{π}{4}$)+$\sqrt{3}$cos(3x+$\frac{π}{4}$)=2sin[(3x+$\frac{π}{4}$)+$\frac{π}{3}$]
=2sin( 3x+$\frac{7π}{12}$)的最小正周期為$\frac{2π}{3}$,
故選:C.

點(diǎn)評(píng) 本題主要考查兩角和的正弦公式,利用了函數(shù)y=Asin(ωx+φ)的周期為$\frac{2π}{ω}$,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.直線x=$\frac{π}{4}$的傾斜角為( 。
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在等比數(shù)列{an}中,a5•a13=6,a4+a14=5,則$\frac{{a}_{80}}{{a}_{90}}$等于( 。
A.$\frac{2}{3}$或$\frac{3}{2}$B.3或-2C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\frac{{lnx+{{({x-b})}^2}}}{x}$(b∈R).若存在x∈[$\frac{1}{2},3}$],使得f(x)>-x•f'(x),則實(shí)數(shù)b的取值范圍是(  )
A.$({-∞,\frac{19}{6}})$B.$({-∞,\frac{3}{2}})$C.$({-∞,\frac{9}{4}})$D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=(x+k+1)$\sqrt{x-k}$,g(x)=$\sqrt{x-k+3}$,其中k>0.
(1)若k=1,解不等式f(x)<2g(x);
(2)求函數(shù)F(x)=f(x)-(x-k)g(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.為了讓學(xué)生了解更多“奧運(yùn)會(huì)”知識(shí),某中學(xué)舉行了一次“奧運(yùn)知識(shí)競賽”,共有800名學(xué)生參加了這次競賽,為了解本次競賽成績情況,從中抽取部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)尚未完成的頻率分布表,解答下列問題:
分組頻數(shù)頻率
60~70a0.16
70~8010
80~90180.36
90~100b
合計(jì)50
(1)若用系統(tǒng)抽樣的方法抽取50個(gè)樣本,現(xiàn)將所有學(xué)生隨機(jī)地編號(hào)為000,001,002,…,799,試寫出第二組第一位學(xué)生的編號(hào);
(2)求頻率分布表格中a,b的值,并估計(jì)800學(xué)生的平均成績;
(3)若成績?cè)?5~95分的學(xué)生為二等獎(jiǎng),問參賽學(xué)生中獲得二等獎(jiǎng)的學(xué)生約為多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知xy>0,若$\frac{x}{y}$+$\frac{4y}{x}$>m2+3m恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.m≥-1或m≤-4B.m≥4或m≤-1C.-4<m<1D.-1<m<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.把長為16cm的鐵絲分成兩段,各圍成一個(gè)正方形,則這兩個(gè)正方形面積和的最小值為( 。
A.2cm2B.4cm2C.6cm2D.8cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一幾何體的三視圖如圖所示,則該幾何的表面積為( 。
A.12B.16C.20D.24

查看答案和解析>>

同步練習(xí)冊(cè)答案