20.3、已知函數(shù)$f(x)=\left\{\begin{array}{l}1-{2^x},x≤0\\{x^2},x>0\end{array}\right.$,則f[f(-1)]=( 。
A.2B.1C.$\frac{1}{4}$D.$\frac{1}{2}$

分析 先求出f(-1)=1-2-1=$\frac{1}{2}$,從f[f(-1)]=f($\frac{1}{2}$),由此能求出結(jié)果.

解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}1-{2^x},x≤0\\{x^2},x>0\end{array}\right.$,
∴f(-1)=1-2-1=$\frac{1}{2}$,
f[f(-1)]=f($\frac{1}{2}$)=$(\frac{1}{2})^{2}$=$\frac{1}{4}$.
故選:C.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,x軸被曲線C2:y=x2-b截得的線段長等于C1的短軸長,C2與y軸的交點為M,過坐標(biāo)原點O的直線l與C2相交于點A、B,直線MA,MB分別與C1相交于點D、E.
(Ⅰ)求C1、C2的方程;
(Ⅱ)求證:MA⊥MB:
(Ⅲ)記△MAB,△MDE的面積分別為S1,S2,若$\frac{{S}_{1}}{{S}_{2}}$=λ,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.用數(shù)學(xué)歸納法證明1+a+a2+…+an+1=$\frac{{1-{a^{n+2}}}}{1-a}({a≠0,1,n∈{N^*}})$,在驗證n=1成立時,計算左邊所得的項是( 。
A.1B.1+aC.a2D.1+a+a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ln(x+1),x>0}\\{\frac{1}{2}x+1,x≤0}\end{array}\right.$,若m<n,且f(m)=f(n),則n-m的取值范圍是[3-2ln2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=$|\begin{array}{l}{sinx}&{cosx}\\{cosx}&{sinx}\end{array}|$的最小正周期是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,若b2+c2=a2-bc,則∠A=( 。
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等差數(shù)列{an},其中a1+a2+a3=-3,a1•a2•a3=8.
(1)求等差數(shù)列{an}的通項公式;
(2)若a2,a3,a1成等比數(shù)列,則求{an+7}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}為等比數(shù)列,其中a5,a9為方程x2+2016x+9=0的二根,則a7的值(  )
A.-3B.3C.±3D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|2x-a|+a.
(1)若不等式f(x)≤6的解集為{x|-2≤x≤3},求實數(shù)a的值;
(2)在(1)的條件下,若存在實數(shù)t,使$f({\frac{t}{2}})$≤m-f(-t)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案