【題目】已知函數(shù),.

(1)討論函數(shù)上的單調性;

(2)設,當時,證明:.

【答案】(1)見解析;(2)見解析

【解析】

(1)先求導函數(shù),求出f'(x)=0的根,然后比較根與區(qū)間的關系,確定a的范圍,根據(jù)f'(x)>0的解集為增區(qū)間,f'(x)<0的解集為減區(qū)間求解即可;

(2)先證得恒成立,再將h(x)通過進行放縮,得到,構造函數(shù)L(x),求導分析單調性、極值,從而求得最小值,可證得結論.

(1) , ,

,得.

時,,當時,恒成立,

上的單調遞增;

時,,

時,, 上單調遞減;

時,, 上單調遞增.

綜上,當時, 上的單調遞增;

時, 上單調遞減,在上單調遞增.

(2)令,得, ,令,得.

時,, 上單調遞減,

時, 上單調遞增;

,即.

時,

,

當且僅當時取等號,

,則.

,由

,

易知此不等式中兩等號成立的條件不同,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,正確的命題的是(

A.已知隨機變量服從二項分布,若,,則;

B.將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,方差恒不變;

C.設隨機變量服從正態(tài)分布,若,則

D.某人在10次射擊中,擊中目標的次數(shù)為,則當時概率最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,底面為正三角形,側棱垂直于底面,.若是棱上的點,且,則異面直線所成角的余弦值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查.下面是根據(jù)調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為體育迷

1)根據(jù)已知條件完成下面的2×2列聯(lián)表;

2)根據(jù)此資料,判斷是否有的把握認為體育迷與性別有關?

非體育迷

體育迷

合計

10

55

合計

附:,其中.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,使得函數(shù)的圖像有公共點,且它們在公共點處的切線相同,則實數(shù)的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有某高新技術企業(yè)年研發(fā)費用投入(百萬元)與企業(yè)年利潤(百萬元)之間具有線性相關關系,近5年的年研發(fā)費用和年利潤的具體數(shù)據(jù)如表:

年研發(fā)費用(百萬元)

年利潤 (百萬元)

數(shù)據(jù)表明之間有較強的線性關系.

(1)求的回歸直線方程;

(2)如果該企業(yè)某年研發(fā)費用投入8百萬元,預測該企業(yè)獲得年利潤為多少?

參考數(shù)據(jù):回歸直線的系數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大型綜藝節(jié)目《最強大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來很神奇,其實原理是十分簡單的,要學會盲擰也是很容易的.根據(jù)調查顯示,是否喜歡盲擰魔方與性別有關.為了驗證這個結論,某興趣小組隨機抽取了50名魔方愛好者進行調查,得到的情況如下表所示:

喜歡盲擰

不喜歡盲擰

總計

23

30

11

總計

50

表(1)

并邀請其中20名男生參加盲擰三階魔方比賽,其完成情況如下表(2)所示.

成功完成時間(分鐘)

人數(shù)

10

4

4

2

表(2)

(Ⅰ)將表(1)補充完整,并判斷能否在犯錯誤的概率不超過0.025的前提下認為是否喜歡盲擰與性別有關?

(Ⅱ)現(xiàn)從表(2)中成功完成時間在這兩組內的6名男生中任意抽取2人對他們的盲擰情況進行視頻記錄,求2人成功完成時間恰好在同一組內的概率.

附參考公式及參考數(shù)據(jù):,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年初,由于疫情影響,開學延遲,為了不影響學生的學習,國務院、省市區(qū)教育行政部門倡導各校開展“停學不停課、停學不停教”,某校語文學科安排學生學習內容包含老師推送文本資料學習和視頻資料學習兩類,且這兩類學習互不影響已知其積分規(guī)則如下:每閱讀一篇文本資料積1分,每日上限積5分;觀看視頻1個積2分,每日上限積6.經(jīng)過抽樣統(tǒng)計發(fā)現(xiàn),文本資料學習積分的概率分布表如表1所示,視頻資料學習積分的概率分布表如表2所示.

1)現(xiàn)隨機抽取1人了解學習情況,求其每日學習積分不低于9分的概率;

2)現(xiàn)隨機抽取3人了解學習情況,設積分不低于9分的人數(shù)為ξ,求ξ的概率分布及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為了對研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

附:對于一組數(shù)據(jù),其回歸直線的斜率的最小二乘估計值為;

本題參考數(shù)值:.

1)若銷量y與單價x服從線性相關關系,求該回歸方程;

2)在(1)的前提下,若該產(chǎn)品的成本是5/件,問:產(chǎn)品該如何確定單價,可使工廠獲得最大利潤.

查看答案和解析>>

同步練習冊答案