分析 (1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.
(2)cn=(2n+1)•3n,利用“錯(cuò)位相減法”與等比數(shù)列求和公式即可得出.
解答 解:(1)由已知得:${a_2}=3q,{a_3}=3{q^2},{b_4}=3+3d,{b_{13}}=3+12d$,即$\left\{\begin{array}{l}3q=3+3d\\ 3{q^2}=3+12d\end{array}\right.$,
解得$\left\{\begin{array}{l}d=2\\ q=3\end{array}\right.或\left\{\begin{array}{l}d=0\\ q=1\end{array}\right.$( 舍),∴d=2,${a_n}={3^n},{b_n}=2n+1$.
(2)cn=(2n+1)•3n,
Sn=3×3+5×32+…+(2n+1)•3n,
3Sn=3×32+5×33+…+(2n-1)•3n+(2n+1)•3n+1,
∴-2Sn=3×3+2×(32+33+…+3n)-(2n+1)•3n+1=2×$\frac{3×({3}^{n}-1)}{3-1}$+3-(2n+1)•3n+1,
化為:Sn=n•3n+1.
點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{9}$ | B. | $\frac{4\sqrt{5}}{9}$ | C. | -$\frac{4\sqrt{5}}{9}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1200 | B. | 600 | C. | 450 | D. | 300 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{2\sqrt{6}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com