8.已知函數(shù)f(x)=|lnx|,g(x)=$\left\{\begin{array}{l}{0,0<x≤1}\\{{|x}^{2}-1|-2,x>1}\end{array}\right.$,則方程|f(x)-g(x)=2的實根個數(shù)為( 。
A.1B.2C.3D.4

分析 在同一個坐標系在畫出兩個函數(shù)的圖象,觀察有

解答 解:設F(x)=f(x)-2,F(xiàn)(x)與g(x)在同一個坐標系在的圖象如圖:觀察得到兩個函數(shù)圖象交點個數(shù)是1個,所以f(x)-g(x)=2的實根個數(shù)為1;
故選:A.

點評 本題考查了利用數(shù)形結(jié)合求方程根的個數(shù)問題;關(guān)鍵是正確將方程根的問題轉(zhuǎn)化為函數(shù)圖象的交點問題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2015-2016學年河南省商丘市高一理下學期期末考數(shù)學試卷(解析版) 題型:選擇題

四名同學根據(jù)各自的樣本數(shù)據(jù)研究變量x,y之間的相關(guān)關(guān)系,并求得回歸直線方程,分別得到以下四個結(jié)論:①y與x負相關(guān)且=2.347x-6.423;②y與x負相關(guān)且=-3.476x+5.648;③y與x正相關(guān)且=5.437x+8.493;④y與x正相關(guān)且=-4.326x-4.578.其中一定不正確的結(jié)論的序號是( )

A.①② B.②③ C.③④ D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知數(shù)列{an}中,若a1=$\frac{1}{2}$,an=$\frac{1}{1-{a}_{n-1}}$(n≥2,n∈N+),則a2017等于(  )
A.1B.-1C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知集合A={x|y=$\sqrt{x-1}$+$\sqrt{2-x}$},B={y|y=2x,x≥a}
(Ⅰ)若a=2,求(∁UA)∩B;
(Ⅱ)若(∁UA)∪B=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設等差數(shù)列{an}的前n項和為Sn,公差為d,已知(a5-1)2015+2016a5+(a5-1)2017=2008,(a11-1)2015+2016a11+(a11-1)2017=2024,則下列命題是真命題的是(  )
A.S15=22,d<0B.S15=22,d>0C.S15=15,d<0D.S15=15,d>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列集合表示正確的是( 。
A.{2,4}B.{2,4,4}C.(1,2,3)D.{高個子男生}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知集合A={x|(4x-1)(5-x)<0},B={x∈Z|-3<x<6},則(∁RA)∩B的元素的個數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≤0}\\{y≥0}\end{array}\right.$,則y的最大值為2,$\frac{y+1}{x+2}$的取值范圍是[$\frac{1}{3}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設直線3x+4y-5=0與圓C1:x2+y2=9交于A,B兩點,若圓C2的圓心在線段AB上,且圓C2與圓C1相切,切點在圓C1的劣弧AB上,則圓C2半徑的最大值是2.

查看答案和解析>>

同步練習冊答案