10.函數(shù)y=cos(2x+φ)(0≤φ≤π)是R上的奇函數(shù),則φ的值是( 。
A.πB.$\frac{π}{2}$C.$\frac{π}{4}$D.0

分析 首先利用奇函數(shù)的定義得到cosφ,然后根據(jù)0≤φ≤π求值.

解答 解:因?yàn)楹瘮?shù)y=cos(2x+φ)(0≤φ≤π)是R上的奇函數(shù),所以x=0時(shí)cosφ=0,又0≤φ≤π,所以φ=$\frac{π}{2}$;
故選:B.

點(diǎn)評(píng) 本題考查了余弦函數(shù)的奇偶性;利用奇函數(shù)在R上有意義,得到x=0時(shí)的函數(shù)值為0解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.己知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn)是F2(2,0),離心率e=2.
(1)求雙曲線C的方程;
(2)若斜率為1的直線l與雙曲線C相交于兩個(gè)不同的點(diǎn)M,N,線段MN的垂直平分線與坐標(biāo)軸圍成的三角形的面積為4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在北緯60°圈上有A、B兩點(diǎn),它們的經(jīng)度相差180°,A、B兩地沿緯線圈的弧長與A、B兩點(diǎn)的球面距離的比為( 。
A.3:2B.2:3C.1:3D.3:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.甲、乙兩地相距400千米,一汽車從甲地勻速行駛到乙地,速度不得超過100千米/時(shí).已知該汽車每小時(shí)的運(yùn)輸成本t(元)關(guān)于速度x(千米/時(shí))的函數(shù)關(guān)系式是t=$\frac{1}{19200}$x4-$\frac{1}{160}$x3+15x.
(1)當(dāng)汽車以60千米/時(shí)的速度勻速行駛時(shí),全程運(yùn)輸成本為多少元?
(2)為使全程運(yùn)輸成本最少,汽車應(yīng)以多少速度行駛?并求出此時(shí)運(yùn)輸成本的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù)且f(x)-g(x)=x3+x2+1,則g(-1)=(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=$\frac{1}{x}$-2x.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列表示:
①{0}=∅;②∅⊆{0};③$\sqrt{3}$∈{x|x≤2};④{x∈N|$\frac{6}{6-x}$∈N}={0,2,3,4,5}中,
錯(cuò)誤的是( 。
A.①②B.①③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知點(diǎn)P是△ABC所在平面外一點(diǎn),點(diǎn)O是點(diǎn)P在平面ABC上的射影,在下列條件下:P到△ABC三個(gè)頂點(diǎn)距離相等;P到△ABC三邊距離相等;AP、BP、CP兩兩互相垂直,點(diǎn)O分別是△ABC的( 。
A.垂心,外心,內(nèi)心B.外心,內(nèi)心,垂心C.內(nèi)心,外心,垂心D.內(nèi)心,垂心,外心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若a,b∈[0,1],則不等式a2+b2≤1成立的概率為(  )
A.$\frac{π}{16}$B.$\frac{π}{12}$C.$\frac{π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案