分別求適合下列條件圓錐曲線的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)為、且過(guò)點(diǎn)橢圓;
(2)與雙曲線有相同的漸近線,且過(guò)點(diǎn)的雙曲線.

(1)(2)

解析試題分析:解:(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為).
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/71/4/hebh51.png" style="vertical-align:middle;" />,所以,
故橢圓的標(biāo)準(zhǔn)方程為.                6分
(2)設(shè)雙曲線的標(biāo)準(zhǔn)方程為).
因?yàn)殡p曲線過(guò)點(diǎn),所以,解得
故雙曲線的方程為,即.         12
考點(diǎn):橢圓方程,雙曲線方程
點(diǎn)評(píng):主要是根據(jù)橢圓和雙曲線的性質(zhì)來(lái)求解橢圓和雙曲線的方程的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓E:的離心率為,右焦點(diǎn)為F,且橢圓E上的點(diǎn)到點(diǎn)F距離的最小值為2.
(1)求橢圓E的方程;
(2)設(shè)橢圓E的左、右頂點(diǎn)分別為A,B,過(guò)點(diǎn)A的直線l與橢圓E及直線x=8分別相交于點(diǎn)M,N.
(ⅰ)當(dāng)過(guò)A,F(xiàn),N三點(diǎn)的圓半徑最小時(shí),求這個(gè)圓的方程;
(ⅱ)若,求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓E:)離心率為,上頂點(diǎn)M,右頂點(diǎn)N,直線MN與圓相切,斜率為k的直線l經(jīng)過(guò)橢圓E在正半軸的焦點(diǎn)F,且交E于A、B不同兩點(diǎn).
(1)求E的方程;
(2)若點(diǎn)G(m,0)且| GA|=| GB|,,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N  (點(diǎn)M在點(diǎn)N的右側(cè)),且。橢圓D:的焦距等于,且過(guò)點(diǎn)

( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過(guò)點(diǎn)M的動(dòng)直線與橢圓D交于A、B兩點(diǎn),若點(diǎn)N在以弦AB為直徑的圓的外部,求直線斜率的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線,直線交拋物線于兩點(diǎn),且

(1)求拋物線的方程;
(2)若點(diǎn)是拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)的拋物線的切線與直線交于點(diǎn),問(wèn)在軸上是否存在定點(diǎn),使得?若存在,求出該定點(diǎn),并求出的面積的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知橢圓的左焦點(diǎn)為F,過(guò)點(diǎn)F的直線交橢圓于A、B兩點(diǎn),線段AB的中點(diǎn)為G,AB的中垂線與x軸和y軸分別交于D、E兩點(diǎn).

(Ⅰ)若點(diǎn)G的橫坐標(biāo)為,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點(diǎn))的面積為S2
試問(wèn):是否存在直線AB,使得S1=S2?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題


已知橢圓C:其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=(O為坐標(biāo)原點(diǎn))。
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)l交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn):若存在,求出M的坐標(biāo);若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù))。
若以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(其中為常數(shù))
(1)當(dāng)時(shí),曲線與曲線有兩個(gè)交點(diǎn).求的值;
(2)若曲線與曲線只有一個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

過(guò)拋物線的焦點(diǎn)作傾斜角為的直線交拋物線于、兩點(diǎn),過(guò)點(diǎn)作拋物線的切線軸于點(diǎn),過(guò)點(diǎn)作切線的垂線交軸于點(diǎn)。

(1) 若,求此拋物線與線段以及線段所圍成的封閉圖形的面積。
(2) 求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案