(本大題滿分14分)
已知中心在原點(diǎn),頂點(diǎn)A1、A2在x軸上,其漸近線方程是,雙曲線過(guò)點(diǎn)
(1)求雙曲線方程
(2)動(dòng)直線經(jīng)過(guò)的重心G,與雙曲線交于不同的兩點(diǎn)M、N,問(wèn):是否存在直線,使G平分線段MN,證明你的結(jié)論
(1)所求雙曲線方程為="1" ;
(2)所求直線不存在。
本試題主要是考查了雙曲線方程的求解,已知直線與雙曲線的位置關(guān)系的綜合運(yùn)用。
(1)利用已知中的漸近線方程是,雙曲線過(guò)點(diǎn)
那么設(shè)出雙曲線的標(biāo)準(zhǔn)方程,然后代入點(diǎn)和a,b的關(guān)系得到求解。
(2)假設(shè)存在直線,使G(2,2)平分線段MN,那么利用對(duì)稱性,分別設(shè)出點(diǎn)的坐標(biāo),那么聯(lián)立方程組,可知斜率,得到直線的方程,從而驗(yàn)證是否存在。
(1)如圖,設(shè)雙曲線方程為=1 …………1分

由已知得………………………………………3分
解得 …………………………………………………5分
所以所求雙曲線方程為="1" ……………………6分
(2)P、A1、A2的坐標(biāo)依次為(6,6)、(3,0)、(-3,0),
∴其重心G的坐標(biāo)為(2,2)…………………………………………………………8分
假設(shè)存在直線,使G(2,2)平分線段MN,
設(shè)M(x1,y1),N(x2,y2) 則有
,∴kl=……………………10分
l的方程為y=(x-2)+2,12分
,消去y,整理得x2-4x+28="0"
Δ=16-4×28<0,∴所求直線不存在…………………………………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線的實(shí)軸長(zhǎng)是  (     )
A.2B.C.4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的左、右焦點(diǎn)分別為的右支上一點(diǎn),且,則等于(   )
A.24B.48C.50D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

是純虛數(shù),則圓錐曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)雙曲線的右焦點(diǎn)F作實(shí)軸所在直線的垂線,交雙曲線于A,B兩點(diǎn),設(shè)雙曲線的左頂點(diǎn)M,若是直角三角形,則此雙曲線的離心率e的值為           (   )
A.B.2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F1,F(xiàn)2是雙曲線a>0,b>0)的左,右焦點(diǎn),過(guò)F1且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若△為正三角形,則該雙曲線的離心率為(  )
A.2B.C.3D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知、為雙曲線的左、右焦點(diǎn),點(diǎn)上,,則
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)雙曲線的兩條漸近線與直線圍成的三角形區(qū)域(包括邊界)為D,P為D內(nèi)的一個(gè)動(dòng)點(diǎn),則目標(biāo)函數(shù)的最小值為(    )
A.B.C.0D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

雙曲線的漸近線夾角為,則cos的值為_(kāi)____________

查看答案和解析>>

同步練習(xí)冊(cè)答案