10.設(shè)函數(shù)f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)-g(x)=x2-x+1,則f(1)=(  )
A.1B.2C.3D.4

分析 根據(jù)條件即可得到$\left\{\begin{array}{l}{f(x)-g(x)={x}^{2}-x+1}\\{f(x)+g(x)={x}^{2}+x+1}\end{array}\right.$,從而可解出函數(shù)f(x)的解析式,從而便可求出f(1)的值.

解答 解:根據(jù)條件,f(-x)=f(x),g(-x)=-g(x);
∴由f(x)-g(x)=x2-x+1①得,f(-x)-g(-x)=x2+x+1=f(x)+g(x);
即f(x)+g(x)=x2+x+1②;
①+②得,2f(x)=2(x2+1);
∴f(x)=x2+1;
∴f(1)=2.
故選:B.

點(diǎn)評 考查偶函數(shù)、奇函數(shù)的定義,構(gòu)造關(guān)于f(x),g(x)的方程組解f(x)的解析式的方法,已知函數(shù)求值的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.命題“?x∈R,4x2-3x+2<0”的否定是?x∈R,4x2-3x+2≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.M是△ABC所在平面內(nèi)一點(diǎn),$\frac{2}{3}\overrightarrow{MB}+\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow 0$,D為AC中點(diǎn),則$\frac{{|\overrightarrow{MD}|}}{{|\overrightarrow{BM}|}}$的值為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)數(shù)列{an}是首項為1,公比為q(q≠-1)的等比數(shù)列,若$\left\{{\frac{1}{{{a_n}+{a_{n+1}}}}}\right\}$是等差數(shù)列,則$(\frac{1}{a_2}+\frac{1}{a_3})+(\frac{1}{a_3}+\frac{1}{a_4})+…+(\frac{1}{{{a_{2015}}}}+\frac{1}{{{a_{2016}}}})$=( 。
A.4026B.4028C.4030D.4032

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.直線l:x+y+a=0與圓C:x2+y2=3截得的弦長為$\sqrt{3}$,則a=( 。
A.$±\frac{3}{2}$B.$±3\sqrt{2}$C.±3D.$±\frac{3}{2}\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知直線l經(jīng)過雙曲線$\frac{{x}^{2}}{4}-{y}^{2}=1$的一個焦點(diǎn)且與其一條漸近線平行,則直線l的方程可以是( 。
A.y=-$\frac{1}{2}x+\frac{\sqrt{5}}{2}$B.y=$\frac{1}{2}x-\sqrt{5}$C.y=2x-$\frac{\sqrt{3}}{2}$D.y=-2x+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合A={x|x<1},B={x|x>3},則∁R(A∪B)={x|1≤x≤3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列命題錯誤的是( 。
A.命題“若lgx=0,則x=0”的逆否命題為“若x≠0,則lgx≠0”
B.若p∧q為假命題,則p,q均為假命題
C.命題p:?x0∈R,使得sinx0>1,則¬p“?x∈R,均有sinx≤1
D.“x>2”是“$\frac{1}{x}$<$\frac{1}{2}$”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.集合A={1,2,3,4,5},B={x|x2-3x<0},則A∩B=(  )
A.{1,2}B.{2,3}C.{3,4}D.{4,5}

查看答案和解析>>

同步練習(xí)冊答案