【題目】正三棱柱ABC﹣A1B1C1底邊長為2,E,F(xiàn)分別為BB1 , AB的中點(diǎn). (I)已知M為線段B1A1上的點(diǎn),且B1A1=4B1M,求證:EM∥面A1FC;
(II)若二面角E﹣A1C﹣F所成角的余弦值為 ,求AA1的值.

【答案】證明:(I)取B1A1中點(diǎn)為N,連結(jié)BN, 則BN∥A1F,又B1A1=4B1M,
則EM∥BN,所以EM∥A1F,
因?yàn)镋M面A1FC,A1F面A1FC,
故EM∥面A1FC.
解:(II)如圖,以F為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,

設(shè)AA1=a.

,
設(shè)平面A1CF法向量為 ,
設(shè)平面A1EF法向量為
,取z=1,得 ,
,取x=1,得 ;
設(shè)二面角E﹣A1C﹣F的平面角為θ,
∵二面角E﹣A1C﹣F所成角的余弦值為 ,
,
設(shè)a2=t,則9t2+10t﹣111=0,得t=3,
即a2=3,∴
【解析】(I)取B1A1中點(diǎn)為N,連結(jié)BN,推導(dǎo)出BN∥A1F,從而EM∥BN,進(jìn)而EM∥A1F,由此能證明EM∥面A1FC.(II)以F為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,設(shè)AA1=a,利用向量法能求出結(jié)果.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:

年份

2010

2011

2012

2013

2014

時(shí)間代號t

1

2

3

4

5

儲蓄存款y(千億元)

5

6

7

8

10


(1)求y關(guān)于t的回歸方程
(2)用所求回歸方程預(yù)測該地區(qū)2015年()的人民幣儲蓄存款.
附:回歸方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若將函數(shù)y=2sin 2x的圖像向左平移 個(gè)單位長度,則評議后圖象的對稱軸為( )
A.x= (k∈Z)
B.x= + (k∈Z)
C.x= (k∈Z)
D.x= + (k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已成橢圓 的左右頂點(diǎn)分別為 ,上下頂點(diǎn)分別為 ,左右焦點(diǎn)分別為 ,其中長軸長為4,且圓 為菱形 的內(nèi)切圓.
(1)求橢圓 的方程;
(2)點(diǎn) 軸正半軸上一點(diǎn),過點(diǎn) 作橢圓 的切線 ,記右焦點(diǎn) 上的射影為 ,若 的面積不小于 ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)在其圖像上存在不同的兩點(diǎn)A(x1 , y1),B(x2 , y2),其坐標(biāo)滿足條件:|x1x2+y1y2|﹣ 的最大值為0,則稱f(x)為“柯西函數(shù)”, 則下列函數(shù):
①f(x)=x+ (x>0);
②f(x)=lnx(0<x<3);
③f(x)=2sinx;
④f(x)=
其中為“柯西函數(shù)”的個(gè)數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在考試測評中,常用難度曲線圖來檢測題目的質(zhì)量,一般來說,全卷得分高的學(xué)生,在某道題目上的答對率也應(yīng)較高,如果是某次數(shù)學(xué)測試壓軸題的第1、2問得分難度曲線圖,第1、2問滿分均為6分,圖中橫坐標(biāo)為分?jǐn)?shù)段,縱坐標(biāo)為該分?jǐn)?shù)段的全體考生在第1、2問的平均難度,則下列說法正確的是(
A.此題沒有考生得12分
B.此題第1問比第2問更能區(qū)分學(xué)生數(shù)學(xué)成績的好與壞
C.分?jǐn)?shù)在[40,50)的考生此大題的平均得分大約為4.8分
D.全體考生第1問的得分標(biāo)準(zhǔn)差小于第2問的得分標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,△PAD為正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E為棱PB的中點(diǎn) (Ⅰ)求證:平面PAB⊥平面CDE;
(Ⅱ)若直線PC與平面PAD所成角為45°,求二面角A﹣DE﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個(gè)集合A,B,滿足BA.若對任意的x∈A,存在ai , aj∈B(i≠j),使得x=λ1ai2aj(λ1 , λ2∈{﹣1,0,1}),則稱B為A的一個(gè)基集.若A={1,2,3,4,5,6,7,8,9,10},則其基集B元素個(gè)數(shù)的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校調(diào)查了200名學(xué)生每周的自習(xí)時(shí)間(單位:小時(shí)),制成了如圖所示的頻率分布直方圖,其中自習(xí)時(shí)間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,若這200名學(xué)生中每周的自習(xí)時(shí)間不超過m小時(shí)的人數(shù)為164,則m的值約為(
A.26.25
B.26.5
C.26.75
D.27

查看答案和解析>>

同步練習(xí)冊答案