分析 (1)連結(jié)BC1,推導(dǎo)出AB⊥B1C,B1C⊥BC1,從而B1C⊥平面ABC1,由此能求出AC1⊥B1C.
(2)由AB⊥平面BB1C1C,BC=BB1,知AC=AB1,由三棱錐A-BB1C的體積為$\frac{\sqrt{6}}{3}$,求出菱形BB1C1C的邊長,由此能求出△ABC的面積.
解答 證明:(1)連結(jié)BC1,
∵AB⊥平面BB1C1C,B1C?平面BB1C1C,∴AB⊥B1C,
∵四邊形BB1C1C是菱形,∴B1C⊥BC1,
∵AB∩BC1=B,∴B1C⊥平面ABC1,
∵AC1?平面ABC1,∴AC1⊥B1C.
解:(2)由AB⊥平面BB1C1C,BC=BB1,知AC=AB1,
設(shè)菱形BB1C1C的邊長為a,
∵∠BCC1=60°,∴${B}_{1}{C}^{2}$=$B{C}^{2}+B{{B}_{1}}^{2}-2BC•B{B}_{1}•cos120°$=3a2,
∵AC⊥AB1,∴$A{C}^{2}+A{{B}_{1}}^{2}={B}_{1}{C}^{2}=3{a}^{2}$,∴AC=AB1=$\frac{\sqrt{6}}{2}$a,
∵AB⊥側(cè)面BB1C1C,BC?側(cè)面BB1C1C,∴AB⊥BC,
∴在Rt△ABC中,AB=$\sqrt{A{C}^{2}-B{C}^{2}}$=$\frac{\sqrt{2}}{2}a$,
∵三棱錐A-BB1C的體積為$\frac{\sqrt{6}}{3}$,
∴${V}_{A-B{B}_{1}C}=\frac{1}{3}{S}_{△B{B}_{1}C}•AB=\frac{1}{3}×\frac{1}{2}×a×a×sin120°$×$\frac{\sqrt{2}}{2}a=\frac{\sqrt{6}}{3}$,
解得a=2,∴AB=$\frac{\sqrt{2}}{2}a=\sqrt{2}$,BC=a=2,
∴△ABC的面積S△ABC=$\frac{1}{2}$×BC×AB=$\frac{1}{2}×2×\sqrt{2}$=$\sqrt{2}$.
點評 本題考查線線垂直的證明,考查三棱錐的體積的求法及應(yīng)用,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com