12.如圖正方形的曲線C是以1為直徑的半圓,從區(qū)間[0,1]上取1600個隨機數(shù)x1,x2,…,x800,y1,y2,…,y800,已知800個點(x1,y1),(x2,y2),…,(x800,y800)落在陰影部分陰影部分的個數(shù)為m,則m的估計值為(  )
A.157B.314C.486D.628

分析 以面積為測度,建立方程,即可得出結(jié)論.

解答 解:由題意,$\frac{m}{800}=\frac{\frac{1}{2}π•\frac{1}{4}}{1}$,∴m=314,
故選B.

點評 本題考查幾何概型,考查學(xué)生的計算能力,正確求面積是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}滿足:2a1+22a2+23a3+…+2nan=n(n∈N*),數(shù)列{$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$}的前n項和為Sn,則S1•S2•S3…S10=$\frac{1}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=x2+ax+b2,若a是從區(qū)間[0,3]內(nèi)任取的一個數(shù),b是從區(qū)間[0,2]內(nèi)任取的一個數(shù),則f(x)的圖象全在x軸上方的概率是( 。
A.$\frac{3}{8}$B.$\frac{5}{8}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓E的一個頂點為A(0,-1),焦點在x軸上,若橢圓右焦點到橢圓E的中心的距離是$\sqrt{2}$
(1)求橢圓E的方程;
(2)設(shè)直線l:y=kx+1(k≠0)與該橢圓交于不同的兩點B,C,若坐標原點O到直線l的距離為$\frac{\sqrt{3}}{2}$,求△BOC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>0,b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,經(jīng)過點($\sqrt{3}$,$\frac{1}{2}$)
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點M(-1,0)作直線交橢圓于A,B兩點,O是坐標原點,求△OAB的面積的最大值,并求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.幾何體三視圖如圖所示,則幾何體的體積為( 。
A.32B.16C.8D.8$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.過拋物線y2=2px(p>0)的焦點F作直線交拋物線于A,B,若S△OAF=4S△OBF,則直線AB的斜率為(  )
A.±$\frac{3}{5}$B.±$\frac{4}{5}$C.±$\frac{3}{4}$D.±$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,a,b,c分別是三內(nèi)角A,B,C對應(yīng)的三邊,已知b2+c2=a2+bc.
(1)求角A的大小;
(2)若2sin2$\frac{B}{2}$=cosC,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若0<a<2,0<b<2,則函數(shù)$f(x)=\frac{1}{3}{x^3}+\sqrt{a}{x^2}+2bx-3$存在極值的概率為$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊答案