已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn)。求證: 直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

(Ⅰ)橢圓的標(biāo)準(zhǔn)方程為
(Ⅱ)直線l過定點(diǎn),定點(diǎn)坐標(biāo)為

解析試題分析:(Ⅰ)因?yàn)闄E圓C上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為.在橢圓中,可求,再根據(jù)橢圓的標(biāo)準(zhǔn)方程為求得.
(Ⅱ)聯(lián)立直線l與橢圓方程得的一元二次方程,因?yàn)橐訟B為直徑的圓過橢圓的右頂點(diǎn)D(2,0),所以,故,可得的關(guān)系式,再由點(diǎn)斜式的直線方程寫出直線l過定點(diǎn),注意檢驗(yàn).
試題解析:(Ⅰ)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為
由已知得:

(Ⅱ)設(shè),聯(lián)立
,則


因?yàn)橐訟B為直徑的圓過橢圓的右頂點(diǎn)D(2,0),

當(dāng),直線過定點(diǎn)(2,0),與已知矛盾;
當(dāng)
所以,直線l過定點(diǎn),定點(diǎn)坐標(biāo)為
考點(diǎn):1、橢圓的標(biāo)準(zhǔn)方程;2、直線與橢圓的位置關(guān)系;3、韋達(dá)定理;4、直線的點(diǎn)斜式方程;5、點(diǎn)與圓的位置關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為.
(1)求橢圓的方程;
(2)過右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,則內(nèi)切圓的圓面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,為坐標(biāo)原點(diǎn),動(dòng)直線
拋物線交于不同兩點(diǎn)
(1)求證:·為常數(shù);
(2)求滿足的點(diǎn)的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為的橢圓過點(diǎn)
(1)求橢圓的方程;
(2)設(shè)不過原點(diǎn)O的直線與該橢圓交于P,Q兩點(diǎn),滿足直線的斜率依次成等比數(shù)列,
面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

曲線在矩陣的變換作用下得到曲線
(Ⅰ)求矩陣;
(Ⅱ)求矩陣的特征值及對(duì)應(yīng)的一個(gè)特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線.過點(diǎn)的直線兩點(diǎn).拋物線在點(diǎn)處的切線與在點(diǎn)處的切線交于點(diǎn)

(Ⅰ)若直線的斜率為1,求;
(Ⅱ)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,點(diǎn)分別是橢圓C:的左、右焦點(diǎn),過點(diǎn)軸的垂線,交橢圓的上半部分于點(diǎn),過點(diǎn)的垂線交直線于點(diǎn).

(1)如果點(diǎn)的坐標(biāo)為(4,4),求橢圓的方程;
(2)試判斷直線與橢圓的公共點(diǎn)個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知平面內(nèi)一動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于1.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過點(diǎn)F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點(diǎn)A,B,l2與軌跡C相交于點(diǎn)D,E,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知左焦點(diǎn)為的橢圓過點(diǎn).過點(diǎn)分別作斜率為的橢圓的動(dòng)弦,設(shè)分別為線段的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若為線段的中點(diǎn),求;
(3)若,求證直線恒過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案