【題目】設橢圓E的方程為+=1(ab0),點O為坐標原點,點A的坐標為(a,0),點B的坐標為(0,b),點M在線段AB上,滿足=2,直線OM的斜率為。
(1)求E的離心率e。
(2)設點C的坐標為(0,-b),N為線段AC的中點,點N關于直線AB的對稱點的縱坐標為,求E的方程

【答案】
(1)

e=


(2)

E的方程為.


【解析】1、由題設條件知,點M的坐標為(,),又Kom=,從而=,進而得a=,c==2b,故e==.
2、由題設條件和(1)的計算結果可得,直線AB的方程為+=1,點N的坐標為(,-),設點N關于直線AB的對稱點S的坐標為(x1),則線段NS的中點T的坐標為(,)又點T在直線AB上,且KNSKAB=-1從而可解得b=3,所以a=故圓E的方程為.
【考點精析】利用橢圓的概念對題目進行判斷即可得到答案,需要熟知平面內與兩個定點,的距離之和等于常數(shù)(大于)的點的軌跡稱為橢圓,這兩個定點稱為橢圓的焦點,兩焦點的距離稱為橢圓的焦距.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若定義在R上的函數(shù) 滿足 ,其導函數(shù) 滿足 ,則下列結論中一定錯誤的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(I)求f(x)的最小正周期;
(II)求f(x)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·湖北)一種畫橢圓的工具如圖1所示.是滑槽的中點,短桿ON可繞O轉動,長桿MN通過N處鉸鏈
與ON連接,MN上的栓子D可沿滑槽AB滑動,且,.當栓子D在滑槽AB內作往復運動時,帶動N繞轉動,M處的筆尖畫出的橢圓記為C.以O為原點,AB所在的直線為軸建立如圖2所示的平面直角坐標系.
(1)(Ⅰ)求橢圓C的方程;
(2)(Ⅱ)設動直線與兩定直線分別交于兩點.若直線總與橢圓有且只有一個公共點,試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是遞增的等比數(shù)列,a1+a4=9,a2a3=8,則數(shù)列的前n項和等于,解得a1=1,a4=8,或者a1=8,a4=1,但由于是遞增數(shù)列,即a1=1,a4=8,即q3==8,所以q=2.因而數(shù)列的前n項和為 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·陜西)如圖,一橫截面為等腰梯形的水渠,因泥沙沉積,導致水渠截面邊界呈拋物線型(圖中虛線表示),則原始的最大流量與當前最大流量的比值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,求的解析式;

2)求的值域,設,為實數(shù)),求時的最大值;

3)對(2)中,若的所有實數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·湖南)某工作的三視圖如圖3所示,現(xiàn)將該工作通過切削,加工成一個體積盡可能大的正方體新工件,并使新工件的一個面落在原工作的一個面內,則原工件材料的利用率為(材料利用率=新工件的體積/原工件的體積)

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=是定義在R上的奇函數(shù),且f(1)=1.

(1)求a,b的值;

(2)判斷并用定義證明f(x)在(+∞)的單調性.

查看答案和解析>>

同步練習冊答案