A. | -1 | B. | 1 | C. | 2 | D. | 3 |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,根據(jù)z的幾何意義,利用數(shù)形結(jié)合即可得到a的值.
解答 解:不等式組$\left\{\begin{array}{l}x-y+1≥0\\ x-3y-1≤0\\ x≤k\end{array}\right.$,對(duì)應(yīng)的平面區(qū)域如圖:
由z=3x-y得y=3x-z,
平移直線y=3x-z,則由圖象可知當(dāng)直線y=3x-z經(jīng)過點(diǎn)A時(shí)直線y=3x-z的截距最小,
此時(shí)z最大,為3x-y=3.
$\left\{\begin{array}{l}{3x-y=3}\\{x-3y-1=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,即A(1,0),
此時(shí)點(diǎn)A在x=k,
解得k=1,
故選:B.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-1)2+(y+3)2=2 | B. | (x+1)2+(y-3)2=4 | C. | (x-1)2+(y+3)2=4 | D. | (x+1)2+(y-3)2=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{25}{9}$ | D. | $\frac{16}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1-6\sqrt{2}}{10}$ | B. | $\frac{\sqrt{3}+2\sqrt{6}}{10}$ | C. | $\frac{1+6\sqrt{2}}{10}$ | D. | $\frac{\sqrt{3}-2\sqrt{6}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com