4.已知$n=\int\begin{array}{l}{e^6}\\ 1\end{array}\frac{1}{x}dx$,那么${(\sqrt{x}-\frac{5}{x})^n}$的展開式中含${x^{\frac{3}{2}}}$的項的系數(shù)為-30.

分析 由定積分求出n=6,從而Tr+1=(-5)6-r${C}_{6}^{r}$${x}^{\frac{3}{2}r-6}$,令$\frac{3}{2}r-6=\frac{3}{2}$,解得r=5,由此能求出${(\sqrt{x}-\frac{5}{x})^n}$的展開式中含${x^{\frac{3}{2}}}$的項的系數(shù).

解答 解:∵$n=\int\begin{array}{l}{e^6}\\ 1\end{array}\frac{1}{x}dx$=(lnx)${|}_{1}^{{e}^{6}}$=lne6-ln1=6,
∴${(\sqrt{x}-\frac{5}{x})^n}$=${(\sqrt{x}-\frac{5}{x})^6}$,
Tr+1=${C}_{6}^{r}(\sqrt{x})^{r}(-\frac{5}{x})^{6-r}$=(-5)6-r${C}_{6}^{r}$${x}^{\frac{3}{2}r-6}$,
令$\frac{3}{2}r-6=\frac{3}{2}$,解得r=5,
∴${(\sqrt{x}-\frac{5}{x})^n}$的展開式中含${x^{\frac{3}{2}}}$的項的系數(shù)為:${(-5)^{1}C}_{6}^{5}$=-30.
故答案為:-30.

點評 本題考查展開式中含${x^{\frac{3}{2}}}$的項的系數(shù)的求法,是中檔題,解題時要認真審題,注意定積分、函數(shù)性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.觀察下列一組數(shù)據(jù)
a1=1,
a2=3+5,
a3=7+9+11,
a4=13+15+17+19,

則a10從左到右第一個數(shù)是( 。
A.91B.89C.55D.45

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.如圖,在△ABC中,已知AB=2,AC=3,∠BAC=60°,點D,E分別在邊AB,AC上,且$\overrightarrow{AB}$=2$\overrightarrow{AD}$,$\overrightarrow{AC}$=3$\overrightarrow{AE}$,點F位線段DE上的動點,則$\overrightarrow{BF}$•$\overrightarrow{CF}$的取值范圍是[-$\frac{1}{16}$,$\frac{1}{2}$].( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足$c(\sqrt{3}sinB+cosB)=a+b$.
(Ⅰ)求角C的值;
(Ⅱ)若a=5,△ABC的面積為$5\sqrt{3}$,求sinB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x-3y-1≤0\\ x≤k\end{array}\right.$,若z=3x-y的最大值為3,則實數(shù)k的值為(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.某校開設的校本課程分別有人文科學、自然科學、藝術體育三個課程類別,每種課程類別開設課程數(shù)及學分設定如下表所示:
人文科學類自然科學類藝術體育類
課程門數(shù)442
每門課程學分231
學校要求學生在高中三年內從中選修3門課程,假設學生選修每門課程的機會均等.
(Ⅰ)甲至少選1門藝術體育類課程,同時乙至多選1門自然科學類課程的概率為多少?
(Ⅱ)求甲選的3門課程正好是7學分的概率;
(Ⅲ)設甲所選3門課程的學分數(shù)為X,寫出X的分布列,并求出X的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.將函數(shù)y=(x-3)2圖象上的點P(t,(t-3)2)向左平移m(m>0)個單位長度得到點Q.若Q位于函數(shù)y=x2的圖象上,則以下說法正確的是( 。
A.當t=2時,m的最小值為3B.當t=3時,m一定為3
C.當t=4時,m的最大值為3D.?t∈R,m一定為3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知A(1,3),B(a,1),C(-b,0),(a>0,b>0),若A,B,C三點共線,則$\frac{3}{a}$+$\frac{1}$的最小值是11+6$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.計算:${2^{\frac{3}{2}}}•{2^{-\frac{1}{2}}}$=2,$lg25-lg\frac{1}{4}$=2.

查看答案和解析>>

同步練習冊答案