在平面直角坐標(biāo)系xOy中,直線l與拋物線y2=4x相交于不同的A、B兩點(diǎn).
(1)如果直線l過拋物線的焦點(diǎn),求·
的值;
(2)如果·
=-4,證明直線l必過一定點(diǎn),并求出該定點(diǎn).
(1);(2)過定點(diǎn)
。
解析試題分析:拋物線的焦點(diǎn)在軸上,直線
過焦點(diǎn)且與拋物線相交,這條直線可能與
垂直,但不可能與
垂直,因此這種直線方程可設(shè)為
的形式,可避免討論斜率存在不存在的問題。直線與拋物線相交于兩點(diǎn)
,我們一般設(shè)
,則
,而這里的
,
可以讓直線方程和拋物線方程聯(lián)立方程組得出。(1)中直線
方程可設(shè)為
,(2)中直線
方程可設(shè)為
,(2)與(1)的區(qū)別在于最后令
,求出
。
試題解析:(1)由題意:拋物線焦點(diǎn)為,
設(shè),代入拋物線方程
中得,
,
設(shè),則
,
∴。
(2)設(shè),代入拋物線方程
中得,
,
設(shè),則
,
∴,
令,∴
,
,
∴直線過定點(diǎn)
,∴若
,則直線
必過一定點(diǎn)。
考點(diǎn):直線與拋物線相交問題,與向量的數(shù)量積。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的左、右焦點(diǎn)分別為,橢圓的離心率為
,且橢圓經(jīng)過點(diǎn)
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)線段是橢圓過點(diǎn)
的弦,且
,求
內(nèi)切圓面積最大時實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中,點(diǎn)A、B的坐標(biāo)分別為
,點(diǎn)C在x軸上方。
(1)若點(diǎn)C坐標(biāo)為,求以A、B為焦點(diǎn)且經(jīng)過點(diǎn)C的橢圓的方程;
(2)過點(diǎn)P(m,0)作傾角為的直線
交(1)中曲線于M、N兩點(diǎn),若點(diǎn)Q(1,0)恰在以線段MN為直徑的圓上,求實(shí)數(shù)m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為
,直線
與以原點(diǎn)為圓心,以橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓的方程;
(2)拋物線與橢圓
有公共焦點(diǎn),設(shè)
與
軸交于點(diǎn)
,不同的兩點(diǎn)
、
在
上(
、
與
不重合),且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓中心在原點(diǎn),焦點(diǎn)在軸上,焦距為2,離心率為
(1)求橢圓的方程;
(2)設(shè)直線經(jīng)過點(diǎn)
(0,1),且與橢圓交于
兩點(diǎn),若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,已知中心在原點(diǎn),離心率為
的橢圓E的一個焦點(diǎn)為圓
的圓心.
⑴求橢圓E的方程;
⑵設(shè)P是橢圓E上一點(diǎn),過P作兩條斜率之積為的直線
,當(dāng)直線
都與圓
相切時,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為
,長軸長為
,直線
交橢圓于不同的兩點(diǎn)
.
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不經(jīng)過橢圓上的點(diǎn)
,求證:直線
的斜率互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)F是拋物線C:的焦點(diǎn),S是拋物線C在第一象限內(nèi)的點(diǎn),且|SF|=
.
(Ⅰ)求點(diǎn)S的坐標(biāo);
(Ⅱ)以S為圓心的動圓與軸分別交于兩點(diǎn)A、B,延長SA、SB分別交拋物線C于M、N兩點(diǎn);
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交軸于點(diǎn)E,若|EM|=
|NE|,求cos∠MSN的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過點(diǎn)
.
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線
交拋物線于不同的兩點(diǎn)
若拋物線上一點(diǎn)
滿足
,求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com