分析 (1)先消去參數(shù)方程中的參數(shù)得普通方程,再利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換將直角坐標(biāo)方程化成極坐標(biāo)方程,通過極坐標(biāo)方程求出三角形的邊長后求面積即可.
(2)將l的參數(shù)方程代入曲線C的普通方程,得t的值,再代入l的參數(shù)方程,得曲線C與直線l的交點坐標(biāo).
解答 解:(1)當(dāng)m=n=1時,曲線C在直角坐標(biāo)系下的普通方程為$\frac{x^2}{4}+{y^2}=1$,
將其化為極坐標(biāo)方程為$\frac{{{ρ^2}{{cos}^2}θ}}{4}+\frac{{{ρ^2}{{sin}^2}θ}}{1}=1$,…(2分)
分別代入$θ=\frac{π}{4}$和$θ=-\frac{π}{4}$,得${|{OA}|^2}={|{OB}|^2}=\frac{8}{5}$,
因為$∠AOB=\frac{π}{2}$,故△AOB的面積$S=\frac{1}{2}|{OA}|•|{OB}|=\frac{4}{5}$…(5分)
(2)當(dāng)m=1,n=2時,曲線C的普通方程x2+y2=4,將l的參數(shù)方程代入曲線C的普通方程,得4t2=0,即t=0,代入l的參數(shù)方程,得x=-$\sqrt{3}$,y=1,所以曲線C與直線l的交點坐標(biāo)為(-$\sqrt{3}$,1)…(10分)
點評 本題考查坐標(biāo)系與參數(shù)方程,對參數(shù)方程與極坐標(biāo)方程之間的靈活轉(zhuǎn)化是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -19 | B. | -7 | C. | -5 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0≤x≤2} | B. | {1,2} | C. | {x|0<x≤2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,5) | B. | (-1,4) | C. | (0,3) | D. | (2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com