分析 (1)由不等式的解集求出b、c的值,代入不等式bx2-(c+1)x-c>0求出解集A,
再根據(jù)交集的定義計(jì)算A∩B;
(2)利用基本不等式求$\frac{{{x^2}-3x+6}}{x-1}$的最小值即可.
解答 解:關(guān)于x的不等式x2-(b+2)x+c<0的解集為{x|2<x<3}
∴$\left\{\begin{array}{l}2+3=b+2\\ 2×3=c\end{array}\right.$,解得$\left\{\begin{array}{l}b=3\\ c=6\end{array}\right.$;
(1)不等式bx2-(c+1)x-c>0可化為3x2-7x-6>0,
由3x2-7x-6>0解得$x<-\frac{2}{3}$或x>3,
即$A=(-∞,-\frac{2}{3})∪(3,+∞)$;
又B=[-2,2),∴$A∩B=[-2,-\frac{2}{3})$;
(2)∵x>1,∴x-1>0,
則$\frac{{{x^2}-bx+c}}{x-1}=\frac{{{x^2}-3x+6}}{x-1}$
=$\frac{{{{(x-1)}^2}-(x-1)+4}}{x-1}$
=$(x-1)+\frac{4}{x-1}-1≥4-1=3$,
當(dāng)且僅當(dāng)x=3時(shí)等號(hào)成立,
即$\frac{{{x^2}-3x+6}}{x-1}$的最小值為3.
點(diǎn)評(píng) 本題考查了一元二次不等式與對(duì)應(yīng)方程的關(guān)系和應(yīng)用問(wèn)題,也考查了基本不等式的應(yīng)用問(wèn)題,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,4) | B. | (0,4) | C. | {0,1,2,3} | D. | {1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-3,0) | B. | $(-3,-\frac{1}{2})$ | C. | (-3,-1) | D. | (-3,-1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{24}{49}$ | B. | $\frac{4}{7}$ | C. | $\frac{25}{49}$ | D. | $\frac{51}{98}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com