4.已知AD為△ABC邊BC的中線,且$\overrightarrow{AB}•\overrightarrow{AC}=-16,|{\overrightarrow{BC}}|=10$,則$|{\overrightarrow{AD}}|$=( 。
A.2B.3C.4D.6

分析 可畫出圖形,對$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$的兩邊平方即可求出${\overrightarrow{AC}}^{2}+{\overrightarrow{AB}}^{2}=68$,而對$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$的兩邊平方,即可求出${\overrightarrow{AD}}^{2}$的值,從而求出$|\overrightarrow{AD}|$的值.

解答 解:如圖,
$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$;
∴${\overrightarrow{BC}}^{2}={\overrightarrow{AC}}^{2}-2\overrightarrow{AB}•\overrightarrow{AC}+{\overrightarrow{AB}}^{2}$;
∴$100={\overrightarrow{AC}}^{2}+32+{\overrightarrow{AB}}^{2}$;
∴${\overrightarrow{AC}}^{2}+{\overrightarrow{AB}}^{2}=68$;
又$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$;
∴${\overrightarrow{AD}}^{2}=\frac{1}{4}({\overrightarrow{AB}}^{2}+2\overrightarrow{AB}•\overrightarrow{AC}+{\overrightarrow{AC}}^{2})$=$\frac{1}{4}×(68-32)=9$;
∴$|\overrightarrow{AD}|=3$.
故選B.

點評 考查向量減法的幾何意義,向量加法的平行四邊形法則,以及向量數(shù)量積的運算.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.過點P(2,-3)的等軸雙曲線的標準方程為( 。
A.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{5}$=1B.$\frac{{x}^{2}}{13}$-$\frac{{y}^{2}}{13}$=1C.$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{5}$=1D.$\frac{{y}^{2}}{13}$-$\frac{{x}^{2}}{13}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.過點P(-4,0)作函數(shù)y=$\sqrt{4-{x}^{2}}$的切線l,則切線l的方程為( 。
A.y=$\sqrt{3}$(x+4)B.y=$\frac{\sqrt{3}}{3}$(x+4)C.y=$\frac{\sqrt{2}}{2}$(x+4)D.y=$\sqrt{2}$(x+4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)y=ax(a>0且a≠1)是減函數(shù),則下列函數(shù)圖象正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)$f(x)=\frac{{3-{x^2}}}{e^x}$在區(qū)間(m,m+2)上單調(diào)遞減,則實數(shù)m的取值范圍為[-1,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在△ABC中,a,b,c分別是A,B,C的對邊,且滿足bsinA+bcosA=c.
(1)求B;
(2)若角A的平分線與BC相交于D點,AD=AC,BD=2求CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.給出程序框圖如圖所示,若輸入n=20,則輸出S=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.0D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知命題p:實數(shù)m滿足m2-7am+12a2<0(a>0),命題q:實數(shù)m滿足方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{6-m}$=1表示焦點在y軸上的橢圓.
(1)當a=1時,若p∧q為真,求m的取值范圍;
(2)若非q是非p的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知實數(shù)x,y滿足條件$\left\{\begin{array}{l}{0≤x≤2}\\{0≤y≤2}\\{x+y≤3}\end{array}\right.$,則z=2x+y+3的最大值是( 。
A.3B.5C.7D.8

查看答案和解析>>

同步練習冊答案