14.已知實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{0≤x≤2}\\{0≤y≤2}\\{x+y≤3}\end{array}\right.$,則z=2x+y+3的最大值是( 。
A.3B.5C.7D.8

分析 畫(huà)出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.

解答 解:實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{0≤x≤2}\\{0≤y≤2}\\{x+y≤3}\end{array}\right.$,滿足的可行域如圖:
則z=2x+y+3即y=-2x+z-3,平移直線y=-2x+z-3,當(dāng)直線y=-2x+z-3經(jīng)過(guò)A時(shí),目標(biāo)函數(shù)取得最大值.
由$\left\{\begin{array}{l}{x=2}\\{x+y=3}\end{array}\right.$,可得A(2,1),
則z=2x+y+3的最大值是:2×2+1+3=8.
故選:D.

點(diǎn)評(píng) 本題考查線性規(guī)劃的簡(jiǎn)單應(yīng)用,畫(huà)出可行域,判斷目標(biāo)函數(shù)的最值是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知AD為△ABC邊BC的中線,且$\overrightarrow{AB}•\overrightarrow{AC}=-16,|{\overrightarrow{BC}}|=10$,則$|{\overrightarrow{AD}}|$=(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知點(diǎn)P是銳角△ABC所在平面內(nèi)的動(dòng)點(diǎn),且滿足$\overrightarrow{CP}•\overrightarrow{CB}=\overrightarrow{CA}•\overrightarrow{CB}$,給出下列四個(gè)命題:
①點(diǎn)P的軌跡是一條直線;
②$|\overrightarrow{CP}|=|\overrightarrow{CA}|$恒成立;
③$|\overrightarrow{CP}|≥|\overrightarrow{CA}|cosC$;
④存在點(diǎn)P使得$|\overrightarrow{PC}+\overrightarrow{PB}|=|\overrightarrow{CB}|$.
則其中真命題的序號(hào)為(  )
A.①②B.③④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.△ABC是邊長(zhǎng)為2的正三角形,已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AC}$=2$\overrightarrow{a}$+$\overrightarrow$,給出下列四個(gè)結(jié)論.
①|(zhì)$\overrightarrow$|=1,②$\overrightarrow{a}$•$\overrightarrow$=-1③$\overrightarrow{a}$⊥$\overrightarrow$④(4$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{BC}$
其中正確結(jié)論的序號(hào)是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖所示,四棱錐S-ABCD的底面是正方形,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的$\sqrt{2}$倍,點(diǎn)P在側(cè)棱SD上,且SP=3PD.
(1)求證:AC⊥SD;
(2)若$AB=\sqrt{2}$,求三棱錐D-ACP的體積;
(3)側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC,若存在,求$\frac{SE}{EC}$的值;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,正八面體P-ABCD-Q由兩個(gè)棱長(zhǎng)都為a的正四棱錐拼接而成.
(Ⅰ)求PQ的長(zhǎng);
(Ⅱ)證明:四邊形PAQC是正方形;
(Ⅲ)求三棱錐A-PBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{a^x},x≥0\\ kx+1,x<0\end{array}$,且0<a<1,k≠0,若函數(shù)g(x)=f(x)-k有兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍為(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.f(x)=log${\;}_{\frac{1}{e}}$(x2-2x)的單調(diào)遞減區(qū)間為(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)P為等邊三角形ABC所在平面內(nèi)的一點(diǎn),滿足$\overrightarrow{AP}$=$\overrightarrow{AB}$+2$\overrightarrow{AC}$,若AB=1,則$\overrightarrow{PB}$•$\overrightarrow{PC}$=( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案