已知橢圓的離心率,左、右焦點分別為F1、F2,點滿足F2在線段PF1的中垂線上.

(1)求橢圓C的方程;

(2)如果圓E:被橢圓C所覆蓋,求圓的半徑r的最大值

答案:
解析:

  解:(1)橢圓的離心率,得:  1分

  其中,橢圓的左、右焦點分別為,

  又點在線段的中垂線上,

  ,  3分

  解得橢圓的方程為  6分

  (2)設(shè)P是橢圓上任意一點,

  則,  8分

  ().

  當時,半徑r的最大值為  13分


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2011-2012學年河南省焦作市高三第一次質(zhì)量檢測文科數(shù)學試卷(解析版) 題型:解答題

已知橢圓的離心率,左、右焦點分別為,定點P,點在線段的中垂線上.

(1)求橢圓C的方程;

(2)設(shè)直線與橢圓C交于M、N兩點,直線的傾斜角分別為,求證:直線過定點,并求該定點的坐標.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年河南省焦作市高三第一次質(zhì)量檢測理科數(shù)學試卷(解析版) 題型:解答題

已知橢圓的離心率,左、右焦點分別為,定點P,點在線段的中垂線上.

(1)求橢圓C的方程;

(2)設(shè)直線與橢圓C交于M、N兩點,直線的傾斜角分別為,求證:直線過定點,并求該定點的坐標.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年安徽省望江縣高三第一次月考理科數(shù)學 題型:解答題

(本小題滿分12分)

已知橢圓的離心率,左、右焦點分別為F1、F2,

定點P(2,),點F2在線段PF1的中垂線上.

⑴求橢圓C的方程;

⑵設(shè)直線l:y=kx+m與橢圓C交于M、N兩點,直線F2M與F2N的傾斜角分別為α,β,且α+β=π,求證:直線l過定點,并求該定點的坐標.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年河南省開封市高三模擬考試理科數(shù)學 題型:解答題

(本小題滿分12分)

已知橢圓的離心率,左、右焦點分別為F1、F2,點,點F2在線段PF1的中垂線上。

(I)求橢圓C的方程;

(II)設(shè)直線與橢圓C交于M、N兩點,直線與F2N的傾斜角分別為,試問直線l是否過定點?若過,求該定點的坐標。

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣東省高考數(shù)學全真模擬試卷6(文科)(解析版) 題型:解答題

已知橢圓的離心率,左、右焦點分別為F1、F2,點滿足F2在線段PF1的中垂線上.
(1)求橢圓C的方程;
(2)如果圓E:被橢圓C所覆蓋,求圓的半徑r的最大值.

查看答案和解析>>

同步練習冊答案