4.設a=4${\;}^{{{log}_3}2}}$,b=4${\;}^{{{log}_9}6}}$,c=($\frac{1}{2}$)${\;}^{-\sqrt{5}}}$,則(  )
A.a>b>cB.a>c>bC.b>c>aD.c>b>a

分析 利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調性即可得出.

解答 解:∵1>log96=log3$\sqrt{6}$>log32,c=${4^{\frac{{\sqrt{5}}}{2}}}$,$\frac{{\sqrt{5}}}{2}$>1,
∴c>b>a.
故選:D.

點評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調性,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知由甲、乙兩位男生和丙、丁兩位女生組成的四人沖關小組,參加由安徽衛(wèi)視推出的大型戶外競技類活動《男生女生向前沖》,活動共有四關,設男生闖過一至四關的概率依次是$\frac{5}{6},\frac{4}{5},\frac{3}{4},\frac{2}{3}$,女生闖過一至四關的概率依次是$\frac{4}{5},\frac{3}{4},\frac{2}{3},\frac{1}{2}$.
(1)求男生闖過四關的概率;
(2)設ε表示四人沖關小組闖過四關的人數(shù),求隨機變量?的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在△ABC,中,AB=2,cosC=$\frac{2\sqrt{7}}{7}$,D是AC上一點,AD=2DC,且cos∠DBC=$\frac{5\sqrt{7}}{14}$.則 $\overrightarrow{AD}$•$\overrightarrow{CB}$=-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=sinx.
(1)當x>0時,證明:${f^'}(x)>1-\frac{x^2}{2}$;
(2)若當$x∈(0,\frac{π}{2})$時,$f(x)+\frac{f(x)}{{{f^'}(x)}}>ax$恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設a,b∈R,則“a+b>4”是“a>1且b>3”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知tanα=-2,求下列各式的值:
(1)$\frac{sinα-3cosα}{sinα+cosα}$
(2)$\frac{1}{sinα•cosα}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=(a2-3a+3)ax是指數(shù)函數(shù),
(1)求f(x)的表達式;
(2)判斷F(x)=f(x)-f(-x)的奇偶性,并加以證明
(3)解不等式:loga(1-x)>loga(x+2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知數(shù)列{an},{bn}滿足a1=1,且an,an+1是方程x2-bnx+3n=0的兩根,則b8等于( 。
A.54B.108C.162D.324

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若冪函數(shù)y=mxα(m,α∈R)的圖象經過點$(8,\frac{1}{4})$,則α=-$\frac{2}{3}$.

查看答案和解析>>

同步練習冊答案