2.f(x)=ax2+bx+c(a≠0).
(Ⅰ)f(-1)=0且任意x∈R,x≤f(x)≤$\frac{{{x^2}+1}}{2}$,求f(x);
(Ⅱ)若|f(x)|<1的解集(-1,3),求a的范圍.

分析 (Ⅰ)根據(jù)f(1)的范圍以及x≤ax2+bx+c恒成立,求出a,b,c的值,從而求出f(x)的解析式即可;
(Ⅱ)通過討論a的范圍,求出f(x)的最小值以及f(x)的最大值,從而求出a的范圍即可.

解答 解:(Ⅰ)f(-1)=0,a-b+c=0,
又x=1,1≤f(1)≤1,
∴f(1)=1即a+b+c=1∴$b=\frac{1}{2},\;\;a+c=\frac{1}{2}$
又∵x≤ax2+bx+c恒成立,
∴$\left\{\begin{array}{l}a>0\\{(b-1)^2}-4ac≤0\end{array}\right.\;\;\;∴a=c=\frac{1}{4}\;\;\;∴f(x)=\frac{1}{4}{(x+1)^2}$…(4分)
(Ⅱ)①a>0,ax2+bx+c<1
解集(-1,3)且f(x)min>-1,
∴$\left\{\begin{array}{l}-1+3=-\frac{a}\\-1×3=\frac{c-1}{a}\end{array}\right.\;\;\;\;\;∴\left\{\begin{array}{l}b=-2a\\ c=-3a+1\end{array}\right.$,
∴f(x)=ax2-2ax+1-3a,
∴f(x)min=a-2a+1-3a>-1,
∴$0<a<\frac{1}{2}$…(8分)
②若a<0,則-ax2-bx-c<1解集(-1,3)且fmax(x)<1,
∴$\left\{\begin{array}{l}-\frac{a}=-1+3\\ \frac{c+1}{a}=-1×3\end{array}\right.\;\;\;\;\;\left\{\begin{array}{l}b=-2a\\ c=-3a=1\end{array}\right.$,
∴f(x)=ax2-2ax-3a-1,
∴f(x)max=a-2a-3a-1<1,
∴$-\frac{1}{2}<a<0$
綜上述$-\frac{1}{2}<a<0$或$0<a<\frac{1}{2}$…(12分)

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),考查分類討論思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.?dāng)?shù)列{an}滿足${a_1}=\frac{1}{3}$,對(duì)任意n∈N*,${a_{n+1}}={a_n}^2+{a_n}$,則$\sum_{n=1}^{2016}{\frac{1}{{{a_n}+1}}}$的整數(shù)部分是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知偶函數(shù)f(x)的定義域?yàn)镽,且f(x-1)是奇函數(shù),則下面結(jié)論一定成立的是(  )
A.f(x+1)是偶函數(shù)B.f(x+1)是非奇非偶函數(shù)
C.f(x)=f(x+2)D.f(x+3)是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知f(x)=sin2x+$\sqrt{3}$cos2x(x∈R),函數(shù)y=f(x+φ)的圖象關(guān)于直線x=0對(duì)稱,則φ的值可以是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點(diǎn)時(shí),定義P的“伴隨點(diǎn)”為${P^'}(\frac{y}{{{x^2}+{y^2}}},\frac{-x}{{{x^2}+{y^2}}})$;當(dāng)P是原點(diǎn)時(shí),定義P的“伴隨點(diǎn)”為它自身,平面曲線C上所有點(diǎn)的“伴隨點(diǎn)”所構(gòu)成的曲線C′定義為曲線C的“伴隨曲線”,現(xiàn)有下列命題:
①若點(diǎn)A的“伴隨點(diǎn)”是點(diǎn)A′,則點(diǎn)A′的“伴隨點(diǎn)”是點(diǎn)A;
②若曲線C關(guān)于x軸對(duì)稱,則其“伴隨曲線”C′關(guān)于y軸對(duì)稱;
③單位圓的“伴隨曲線”是它自身;
④一條直線的“伴隨曲線”是一條直線.
其中真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知正數(shù)x,y滿足$\frac{1}{x}+\frac{1}{y}=1$,則4x+9y的最小值為25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=x2+ex,則f'(1)=2+e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知點(diǎn)A(a,-2)與B(0,3)之間的距離是7,則a=$±2\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若半徑為2的圓心角所對(duì)的弧長(zhǎng)為4 cm,則這個(gè)圓心角大小為2.(用弧度制表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案