畫出函數(shù)y=-x2+2|x|-3的圖象并指出函數(shù)的單調(diào)區(qū)間.
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)分段函數(shù)的定義去掉絕對值是解決本題的關(guān)鍵.利用分類討論思想確定出各段的函數(shù)類型,選擇關(guān)鍵點或者相應(yīng)函數(shù)的圖象確定要素準(zhǔn)確畫出該函數(shù)的圖象,據(jù)圖象寫出其單調(diào)區(qū)間.
解答: 解:y=-x2+2|x|-3=
-x2+2x-3,x≥0
-x2-2x-3,x<0
,
圖象如圖所示,
由圖象可知,函數(shù)在(-∞,-
1
2
],(0,
1
2
]上的單調(diào)遞增,在(-
1
2
,0],(
1
2
,+∞)上單調(diào)遞減,
點評:本題主要考查函數(shù)的圖象和性質(zhì)應(yīng)用,體現(xiàn)了分類討論、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為矩形,∠AEB=
π
2
,BC⊥平面ABE,BF⊥CE,垂足為F.
(1)求證:BF⊥平面AEC,
(2)若AB=2BC=2BE=2,求ED與平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
1
2
m2-m)x2+m+1.
(1)若函數(shù)y=lgf(x)的定義域為R,求實數(shù)m的取值范圍;
(2)設(shè)命題p:?x∈[
1
2
,2],f(x)≥3.若命題p為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2mx+7(x≤1)和g(x)=x2-(m+8)x+9(1<x≤3)是﹙-∞,3]上的減函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一枚硬幣拋擲n次,求正面次數(shù)與反面次數(shù)之差x的概率分布,并求出x的期望E(x)與方差D(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
ax3-
1
4
x2
+cx+d(a,c,d∈R)滿足f(0)=0,f′(1)=0且f′(x)≥0 在R上恒成立.
(1)求a,c,d的值;
(2)是否存在實數(shù)m,使函數(shù)g(x)=f′(x)-mx在區(qū)間[1,2]上有最小值-5?若存在,請求出實數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P是拋物線y=
1
2
x2
上的動點,P在直線y=-1上的射影為M,定點A(4,
7
2
),則|PA|+|PM|的最小值為(  )
A、
9
2
B、5
C、
11
2
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出下列函數(shù)的反函數(shù):
(1)y=
x
-1;
(2)y=
x+1
x-2
;
(2)y=
x
2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校200名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100).則成績在[90,100]內(nèi)的人數(shù)為( 。
A、20B、15C、10D、5

查看答案和解析>>

同步練習(xí)冊答案